Skip to main content
Log in

The L-pseudo-solution using stochastic algorithm of Landweber

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, we consider a linear equation Ax=u. A is an operator with an unbounded inverse in a Hilbert space. The right side u does not belong to the range of A. Obviously, a solution in classical sense does not exist and A −1 u does not have a sense.

To solve this problem arising from many experimental fields of science, where the second member u stems from measurements, we propose a recurrent procedure which converges almost completely and in quadratic mean to L-pseudo-solution and for which we build up a confidence interval. To check the validity of our results, a numerical example which is standard in rheology is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avril S, Bonnet M, Bretelle S, Grediac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48:381–402

    Article  Google Scholar 

  2. Bonnet M, Constantinescu A (2005) Inverse problems in elasticity. Inverse Probl 21:1–50

    Article  MathSciNet  ADS  Google Scholar 

  3. Bui HD (1994) Inverse problems in the mechanics of materials: an introduction. CRC Press, Boca Raton

    Google Scholar 

  4. Honerkamp J, Wesse J (1990) Tikhonov regularization method for ill-posed problems: a comparison of different methods for the determination of the regularization parameter. Contin Mech Thermodyn 2:17–30

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Tikhonov AN (1963) Solution of incorrectly formulated problems and regularization method. Soviet Math Dokl 1035–1038

  6. Tikhonov AN, Arsenine VY (1977) Solutions of ill-posed problems. Wiley, New York

    MATH  Google Scholar 

  7. Picard E (1910) Sur un théorème général relatif aux équations intégrales de première espèce et sur quelques problèmes de physique mathématique. Rend Circ Mat Palermo 29:79–97

    Article  MATH  Google Scholar 

  8. Phillips DL (1962) A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput Mach 9:84–97

    Article  MathSciNet  MATH  Google Scholar 

  9. Landweber L (1951) An iteration formula for Fredholm integral equations of the first kind. Am J Math 73:615–624

    Article  MathSciNet  MATH  Google Scholar 

  10. Ivanov VK (1962) On linear problems that are not well-posed. Dokl Akad Nauk SSSR 145(2):270–272 (in Russian)

    MathSciNet  MATH  Google Scholar 

  11. Arcangeli R (1966) Pseudo-solution de l’équation Ax=y. C R Acad Sci 263(8):282–285

    MathSciNet  MATH  Google Scholar 

  12. Dahmani A, Bouhmila F (2006) Consistency of Landweber algorithm in an ill-posed problem with random data. C R Sci Paris, Ser I 343:487–491

    Article  MathSciNet  MATH  Google Scholar 

  13. Bissantz N, Honage T, Munk A (2004) Consistency and rate of convergence of non linear Tikhonov regularization with random noise. Inverse Probl 20:1773–1789

    Article  ADS  MATH  Google Scholar 

  14. Bondarev V, Dahmani A (1990) Stochastic approximation in ill posed problems with random errors. Avtom Telemeh 1990(5):54–63. Translation in: Bondarev BV, Dahmani A (1990) Autom Remote Control 45(51):615–623 (Part 1)

    MathSciNet  Google Scholar 

  15. Cardot H (2002) Spatially adaptive splines for statistical linear inverse problems. J Multivar Anal 81:100–119

    Article  MathSciNet  MATH  Google Scholar 

  16. Cavalier L (2006) Inverse problems with non compact operators. J Stat Plan Inference 136:390–400

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaipio J, Somersalo E (2004) Computational and statistical methods for inverse problems. Springer, New York

    Google Scholar 

  18. Morozov VA (1969) Pseudo-solutions. USSR Comput Math Math Phys 9(6):196–203

    Article  Google Scholar 

  19. Honerkamp J (1989) Ill-posed problems in rheology. Rheol Acta 28(5):363–371

    Article  MATH  Google Scholar 

  20. Lee S, Knauss WG (2000) A note on the determination of relaxation and creep data from ramp tests. Mech Time-Depend Mater 4:1–7

    Article  Google Scholar 

  21. Meissner J (1978) Combined constant strain rate and stress relaxation test for linear vicoelastic studies. J Polym Sci, Polym Phys Ed 16:915–919

    Article  Google Scholar 

  22. Sorvari J, Malinen M (2006) Determination of relaxation modulus of linearly viscoelastic material. Mech Time-Depend Mater. doi:10.1007/s11043-006-9011-4

  23. Mead DW (1994) Numerical interconversion of linear viscoelastic material functions. J Rheol 38(6):1769–1794

    Article  ADS  Google Scholar 

  24. Sorvari J, Malinen M (2007) Numerical interconversion between linear viscoelastic material functions with regularization. Int J Solids Struct 44:1291–1303

    Article  MATH  Google Scholar 

  25. Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behaviour. Springer, Berlin

    Book  Google Scholar 

  26. Bechir H, Idjeri M (2011) Computation of the relaxation and creep functions of elastomers from harmonic shear modulus. Mech Time-Depend Mater 15:119–138

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelnasser Dahmani.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 247 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahmani, A., Zerouati, H. & Bouhmila, F. The L-pseudo-solution using stochastic algorithm of Landweber. Meccanica 47, 1935–1943 (2012). https://doi.org/10.1007/s11012-012-9565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9565-y

Keywords

Navigation