Skip to main content
Log in

Quantum Curves for Hitchin Fibrations and the Eynard–Orantin Theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We generalize the topological recursion of Eynard–Orantin (JHEP 0612:053, 2006; Commun Number Theory Phys 1:347–452, 2007) to the family of spectral curves of Hitchin fibrations. A spectral curve in the topological recursion, which is defined to be a complex plane curve, is replaced with a generic curve in the cotangent bundle T*C of an arbitrary smooth base curve C. We then prove that these spectral curves are quantizable, using the new formalism. More precisely, we construct the canonical generators of the formal \({\hbar}\)-deformation family of D modules over an arbitrary projective algebraic curve C of genus greater than 1, from the geometry of a prescribed family of smooth Hitchin spectral curves associated with the \({SL(2,\mathbb{C})}\)-character variety of the fundamental group π1(C). We show that the semi-classical limit through the WKB approximation of these \({\hbar}\)-deformed D modules recovers the initial family of Hitchin spectral curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M., Fokas, A.: Complex variables: Introduction and applications, 2nd edn. Cambridge Texts in Applied Mathematics, vol. 35. Cambridge University Press, Cambridge (2003)

  2. Aganagic, M., Dijkgraaf, R., Klemm, A., Mariño, M., Vafa, C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451–516 (2006). [arXiv:hep-th/0312085]

    Google Scholar 

  3. Aganagic, M., Vafa, C.: Large N duality, mirror symmetry, and a Q-deformed A-polynomial for knots (2012). [arXiv:1204.4709v4[physics.hep-th]]

  4. Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Alexandrov, A., Mironov, A., Morozov, A.: Unified description of correlators in non-Gaussian phases of Hermitean matrix model (2004) [arXiv:hep-th/0412099]

  6. Arbarello, E., Cornalba, M., Griffiths, P.A.: Geometry of Algebraic Curves, vol. II, Grundlehren der mathematischen Wissenschaften, vol. 268, Springer, Berlin (2011)

  7. Arinkin D.: On λ-connections on a curve where λ is a formal parameter. Math. Res. Lett. 12, 551–565 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beauville A., Narasimhan M.S., Ramanan S.: Spectral curves and the generalized theta divisor. J. Reine Angew. Math. 398, 169–179 (1989)

    MATH  MathSciNet  Google Scholar 

  9. Beilinson, A., Drinfeld, V.: Quantization of Hitchin integrable system and Hecke eigensheaves (preprint)

  10. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory, vol. I. Springer, Berlin (1999)

  11. Bergère, M., Eynard, B.: Determinantal formulae and loop equations (2009). [arXiv:0901.3273 [physics.math-ph]]

  12. Bonelli, G., Maruyoshi, K., Tanzini, A.: Quantum Hitchin systems via beta-deformed matrix models (2011). [arXiv:1104.4016 [hep-th]]

  13. Borot, G., Eynard, B.: All-order asymptotics of hyperbolic knot invariants from non-perturbative topological recursion of A-polynomials (2012). [arXiv:1205.2261v1 [math-ph]]

  14. Bouchard, V., Eynard, B.: Think globally, compute locally. JHEP 02, Article: 143 (2013)

    Google Scholar 

  15. Bouchard, V., Hernández Serrano, D., Liu, X., Mulase, M.: Mirror symmetry for orbifold Hurwitz numbers (2013). [arXiv:1301.4871 [math.AG]]

  16. Bouchard V., Klemm A., Mariño M., Pasquetti S.: Remodeling the B-model. Commun. Math. Phys. 287, 117–178 (2008)

    Article  ADS  Google Scholar 

  17. Bouchard V., Mariño M.: Hurwitz numbers, matrix models and enumerative geometry. Proc. Symposia Pure Math. 78, 263–283 (2008)

    Article  Google Scholar 

  18. Brini, A., Eynard, B., Mariño, M.: Torus knots and mirror symmetry (2011). [arXiv:1105.2012]

  19. Chen, L.: Bouchard–Klemm–Marino–Pasquetti Conjecture for \({\mathbb{C}^3}\) (2009). [arXiv: 0910.3739]

  20. Chekhov L., Eynard B., Orantin N.: Free energy topological expansion for the 2-matrix model. JHEP 0612, 053 (2006)

    Google Scholar 

  21. Chernov, A., Talalaev, D.: Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence (2006). [arXiv:hep-th/0604128 [hep-th]]

  22. Cooper D., Culler D.M., Gillet H., Long D., Shalen P.: Plane curves associated to character varieties of 3-manifolds. Invent. Math. 118, 47–84 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Dijkgraaf, R., Fuji, H., Manabe, M.: The volume conjecture, perturbative knot invariants, and recursion relations for topological strings (2010). [arXiv:1010.4542 [hep-th]]

  24. Dijkgraaf R., Hollands L., Sułkowski P.: Quantum curves and \({\mathcal{D}}\)-modules. J. High Energy Phys. 0810.4157, 1–58 (2009)

    Google Scholar 

  25. Dijkgraaf, R., Hollands, L., Sułkowski, P., Vafa, C.: Supersymmetric gauge theories, intersecting branes and free Fermions. J. High Energy Phys. 0802.106 (2008)

  26. Dijkgraaf, R., Vafa, C.: Two dimensional Kodaira–Spencer theory and three dimensional Chern–Simons gravity (2007). [arXiv:0711.1932 [hep-th]]

  27. Dijkgraaf R., Verlinde E., Verlinde H.: Loop equations and Virasoro constraints in non-perturbative two-dimensional quantum gravity. Nucl. Phys. B 348, 435–456 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  28. Do, N., Leigh, O., Norbury, P.: Orbifold Hurwitz numbers and Eynard–Orantin invariants (2012). arXiv:1212.6850 [math.AG (physics.math-ph)]

  29. Donagi, R., Markman, E.: Spectral covers, algebraically completely integrable Hamiltonian systems, and moduli of bundles. Lecture Notes in Mathematics, vol. 1620. Springer, New York (1996)

  30. Dubrovin, B.: Geometry of 2d topological field theories (1994). [arxiv:hep-th/9407018 [physics.hep-th]]

  31. Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants (2001). [arxiv:math/0108160 [math.DG]]

  32. Dumitrescu, O., Mulase, M., Sorkin, A., Safnuk, B.: The spectral curve of the Eynard–Orantin recursion via the Laplace transform. In: Dzhamay, Maruno and Pierce (eds.) Algebraic and Geometric Aspects of Integrable Systems and Random Matrices. Contemporary Mathematics, vol. 593, pp. 263–315 (2013)

  33. Dunin-Barkowski, P., Kazarian, M., Orantin, N., Shadrin, S., Spitz, L.: Polynomiality of Hurwitz numbers, Bouchard-Mariño conjecture, and a new proof of the ELSV formula (2013). [arXiv:1307.4729 [math.AG (physics.hep-th physics.math-ph)]]

  34. Dunin-Barkowski, P., Orantin, N., Shadrin, S., Spitz, L.: Identification of the Givental formula with the spectral curve topological recursion procedure (2012). [arXiv:1211.4021 [physics.math-ph (math.AG, physics.hep-th)]]

  35. Ekedahl T., Lando S., Shapiro M., Vainshtein A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146, 297–327 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Etingof, P., Ma, X.: Lecture notes on Cherednik algebras (preprint)

  37. Eynard, B.: Topological expansion for the 1-hermitian matrix model correlation functions (2004). [arXiv:0407261 [hep-th]]

  38. Eynard, B.: Intersection numbers of spectral curves (2011) [arXiv:1104.0176]

  39. Eynard B., Mariño M.: A holomorphic and background independent partition function for matrix models and topological strings. J. Geom. Phys. 61, 1181–1202 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Eynard B., Mulase M., Safnuk B.: The Laplace transform of the cut-and-join equation and the Bouchard–Mariño conjecture on Hurwitz numbers. Publ. Res. Inst. Math. Sci. 47, 629–670 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Eynard B., Orantin N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1, 347–452 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Eynard, B., Orantin, N.: Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture (2013). [arXiv:1205.1103v2 [math-ph]]

  43. Fang, B., Liu, C.-C. M., Zong, Z.: All genus open-closed mirror symmetry for affine toric Calabi–Yau 3-orbifolds (2013). [arXiv:1310.4818 [math.AG]]

  44. Fay, J.: Theta functions on Riemann surfaces. Lecture Notes in Mathematics, vol. 352. Springer, New York (1973)

  45. Frenkel, E.: Lectures on the Langlands program and conformal field theory (2005). [arXiv:hep-th/0512172]

  46. Fuji, H., Gukov, S., Sułkowski, P.: Volume conjecture: refined and categorified (2012). [arXiv:1203.2182v1 [hep-th]]

  47. Fuji, H., Gukov, S., Sułkowski, P.: Super-A-polynomial for knots and BPS states (2012). [arXiv:1205.1515v2 [hep-th

  48. Gaiotto, D.: N = 2 dualities (2009). [arXiv:0904.2715 [hep-th]]

  49. Gaiotto, D., Moore, G. W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation (2009). [arXiv:0907.3987 [hep-th]]

  50. Garoufalidis S.: On the characteristic and deformation varieties of a knot. Geom. Topol. Monogr. 7, 291–309 (2004)

    Article  MathSciNet  Google Scholar 

  51. Garoufalidis S., Lê T.T.Q.: The colored Jones function is q-holonomic. Geom. Topol. 9, 1253–1293 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  52. Goulden I.P.: A differential operator for symmetric functions and the combinatorics of multiplying transpositions. Trans. A.M.S. 344, 421–440 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  53. Goulden I.P., Jackson D.M.: Transitive factorisations into transpositions and holomorphic mappings on the sphere. Proc. A.M.S. 125, 51–60 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  54. Gukov, S., Sułkowski, P.: A-polynomial, B-model, and quantization (2011). [arXiv:1108.0002v1 [hep-th]]

  55. Hausel, T.: Global topology of the Hitchin system (2011). [arXiv:1102.1717v12 [math.AG]]

  56. Hausel T., Thaddeus M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153, 197–229 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. Higgs P.W.: Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  58. Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (Ser. 3) 55, 59–126 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  59. Hitchin N.J.: Stable bundles and integrable systems. Duke Math. J. 54, 91–114 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  60. Hodge A., Mulase M.: Hitchin integrable systems, deformations of spectral curves, and KP-type equations. Adv. Stud. Pure Math. 59, 31–77 (2010)

    MathSciNet  Google Scholar 

  61. Hollands, L.: Topological strings and quantum curves, Ph.D. Thesis, University of Amsterdam (2009). [arXiv:0911.3413 [hep-th]]

  62. Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Korotkin, D., Zograf, P.: Tau function and the Prym class (2013). [arXiv:1302.0577 [math.AG (nlin.SI physics.math-ph)

  64. Li J., Liu C.-C.M., Liu K., Zhou J.: A mathematical theory of the topological vertex. Geom. Topol. 13, 527–621 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  65. Li Y., Mulase M.: Prym varieties and integrable systems. Commun. Anal. Geom. 5, 279–332 (1997)

    MATH  MathSciNet  Google Scholar 

  66. Liu K., Xu H.: Recursion formulae of higher Weil–Petersson volumes. Int. Math. Res. Notices 5, 835–859 (2009)

    MATH  Google Scholar 

  67. Mariño M.: Open string amplitudes and large order behavior in topological string theory. J. High Energy Phys. 0803-060, 1–33 (2008)

    ADS  Google Scholar 

  68. Mirzakhani M.: Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces. Invent. Math. 167, 179–222 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  69. Mirzakhani M.: Weil–Petersson volumes and intersection theory on the moduli space of curves. J. Am. Math. Soc. 20, 1–23 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  70. Mulase M., Safnuk B.: Mirzakhani’s Recursion Relations, Virasoro Constraints and the KdV Hierarchy. Indian J. Math. 50, 189–228 (2008)

    MATH  MathSciNet  Google Scholar 

  71. Mulase M., Shadrin S., Spitz L.: The spectral curve and the Schrödinger equation of double Hurwitz numbers and higher spin structures. Commun. Number Theory Phys. 7, 1–19 (2013)

    Article  MathSciNet  Google Scholar 

  72. Mulase, M., Sułkowski, P.: Spectral curves and the Schrödinger equations for the Eynard–Orantin recursion (2012). [arXiv:1210.3006]

  73. Mulase M., Zhang N.: Polynomial recursion formula for linear Hodge integrals. Commun. Number Theory Phys. 4, 267–294 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  74. Mumford, D.: Tata lectures on theta II, Jacobian theta functions and differential equations, Progress in Mathematics, vol. 43. Birkhäuser, Basel (1984)

  75. Nekrasov N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004)

    Article  MathSciNet  Google Scholar 

  76. Ooguri, H., Sułkowski, P., Yamazaki, M.: Wall Crossing As Seen By Matrix Models (2010). [arXiv:1005.1293]

  77. Simpson C.T.: Higgs bundles and local systems. Publications Mathématiques de l’I.H.E.S. 75, 5–95 (1992)

    Article  MATH  Google Scholar 

  78. Talalaev, D.: Quantization of the Gaudin System (2004). [arXiv:hep-th/0404153]

  79. Vakil, R.: Harvard Thesis (1997)

  80. Witten E.: Two dimensional gravity and intersection theory on moduli space. Surv. Differ. Geom. 1, 243–310 (1991)

    Article  MathSciNet  Google Scholar 

  81. Zhou, J.: Local mirror symmetry for one-legged topological vertex (2009). [arXiv:0910.4320]

  82. Zhou, J.: Quantum mirror curves for \({{\mathbb C}^3}\) and the resolved confiold (2012). arXiv:1207.0598v1 [math.AG]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohico Mulase.

Additional information

O. Dumitrescu is a member of the Simion Stoilow Institute of Mathematics of the Romanian Academy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitrescu, O., Mulase, M. Quantum Curves for Hitchin Fibrations and the Eynard–Orantin Theory. Lett Math Phys 104, 635–671 (2014). https://doi.org/10.1007/s11005-014-0679-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0679-0

Mathematics Subject Classification (1991)

Keywords

Navigation