Skip to main content
Log in

Topological Recursions of Eynard–Orantin Type for Intersection Numbers on Moduli Spaces of Curves

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that the Virasoro constraints satisfied by the higher Weil–Petersson volumes of moduli spaces of curves are equivalent to Eynard–Orantin topological recursions for some spectral curve. This provides a geometric proof of a result originally derived using a matrix model by Eynard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, J., Cochran, D., Safnuk, B., Woskoff, K.: Topological recursion for symplectic volumes of moduli spaces of curves. Mich. Math. J. 61(2), 331–358 (2012). arXiv:1010.1747

    Google Scholar 

  2. Borot, G., Eynard, B., Mulase, M., Safnuk, B.: Hurwitz numbers, matrix models and topological recursion. J. Geom. Phys. 61(2), 522–540 (2011). arXiv:0906.1206

    Google Scholar 

  3. Bouchard, V., A. Klemm, Mariño, M., Pasquetti, S.: Remodeling the B-model. Commun. Math. Phys. 287(1), 117–178 (2009). arXiv:0709.1453

    Google Scholar 

  4. Bouchard, V., Mariño, M.: Hurwitz numbers, matrix models and enumerative geometry. In: From Hodge Theory to Integrability and TQFT tt*-Geometry, 263–283. Proceedings of Symposia in Pure Mathematics, vol. 78. American Mathematical Society, Providence (2008). arXiv:0709.1458

  5. Chen, L.: Bouchard–Klemm–Mariño–Pasquetti conjecture for \({\mathbb{C}^3}\). arXiv:0910.3739

  6. Chen, L., Li, Y., Liu, K.: Localization, Hurwitz numbers and the Witten conjecture. Asian J. Math. 12(4), 511–518 (2008). math.AG/0609263

    Google Scholar 

  7. Dijkgraaf, R.: Intersection Theory, Integrable Hierarchies and Topological Field Theory, New Symmetry Principles in Quantum Field theory (Cargse, 1991). NATO Advanced Science Institute Series B, Physics, vol. 295, pp. 95–158. Plenum, New York (1992)

  8. Dijkgraaf R., Verlinde H., Verlinde E.: Topological strings in d <  1. Nuclear Phys. B 352, 59–86 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  9. Dumitrescu, O., Mulase, M., Safnuk, B., Sorkin, A.: The spectral curve of the Eynard–Orantin recursion via the Laplace transform. arXiv:1202.1159

  10. Eynard, B.: Recursion between Mumford volumes of moduli spaces. Ann. Henri Poincaré 12(8), 1431–1447 (2011). arXiv:0706.4403

    Google Scholar 

  11. Eynard, B.: Invariants of spectral curves and intersection theory of moduli spaces of complex curves. arXiv:1110.2949

  12. Eynard, B., Mulase, M., Safnuk, B.: The Laplace transform of the cut-and-join equation and the Bouchard–Marino conjecture on Hurwitz numbers. Publ. Res. Inst. Math. Sci. 47(2), 629–670 (2011). arXiv:0907.5224

    Google Scholar 

  13. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007). arXiv:math-ph/0702045.

    Google Scholar 

  14. Eynard, B., Orantin, N.: Weil–Petersson volume of moduli spaces, Mirzakhanis recursion and matrix models. arXiv:0705.3600

  15. Eynard, B., Orantin, N.: Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture. arXiv:1205.1103

  16. Kazarian M.E., Lando S.K.: An algebro-geometric proof of Wittens conjecture. J. Am. Math. Soc. 20, 1079–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, Y.-S., Liu, K.: A simple proof of Witten conjecture through localization. math.AG/0508384

  18. Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Liu, K., Xu, H.: The n-point functions for intersection numbers on moduli spaces of curves. Adv. Theor. Math. Phys. 15(5), 1201–1236 (2011). arXiv:math/0701319

    Google Scholar 

  20. Liu, K., Xu, H.: Recursion formulae of higher Weil–Petersson volumes. Int. Math. Res. Not. 2009(5), 835–859 (2009)

    Google Scholar 

  21. Mariño, M.: Open string amplitudes and large order behavior in topological string theory. J. High Energy Phys. (3), 060 (2008). arXiv:hep-th/0612127

  22. Mirzakhani M.: Weil–Petersson volumes and intersection theory on the moduli space of curves. J. Am. Math. Soc. 20, 1–23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mulase M., Safnuk B.: Mirzakhani’s recursion relations, Virasoro constraints and the KdV hierarchy. Indiana J. Math. 50, 189–218 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Okounkov, A.: Generating functions for intersection numbers on moduli spaces of curves. Int. Math. Res. Not. (18), 933–957 (2002). arXiv:math/0101201

  25. Okounkov, A., Pandharipande, R.: Gromov–Witten theory, Hurwitz numbers, and Matrix models, I. In: Algebraic geometrySeattle 2005. Part 1, 325–414. Proceedings of Symposia in Pure Mathematics, vol. 80, Part 1. American Mathematical Society, Providence (2009). math.AG/0101147

  26. Witten E.: Two-dimensional gravity and intersection theory on moduli spaces. Surv. Differ. Geom. 1, 243–269 (1991)

    MathSciNet  Google Scholar 

  27. Zagier, D.: The three-point function for \({\overline{\mathcal{M}}_{g}}\) (unpublished)

  28. Zhou, J.: Local mirror symmetry for one-legged topological vertex. arXiv:0910.4320

  29. Zhou, J.: Local mirror symmetry for the topological vertex. arXiv:0911.2343

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J. Topological Recursions of Eynard–Orantin Type for Intersection Numbers on Moduli Spaces of Curves. Lett Math Phys 103, 1191–1206 (2013). https://doi.org/10.1007/s11005-013-0632-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-013-0632-7

Mathematics Subject Classification (2000)

Keywords

Navigation