Skip to main content
Log in

Thermal behaviour of erythromycin-active substance and tablets

Part 1. Kinetic study of the active substance under non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The application of thermal methods is of great importance in the solution of pharmaceutical problems, such as the control of raw materials, the determination of purity, the qualitative and quantitative analysis of drug formulation, tests of thermal stability and compatibility, the determination of kinetic parameters etc. The evaluation of thermal stability in the solid state is mostly made by analyzing their decomposition under isothermal and non-isothermal conditions. This study reports the study on the thermal behaviour of erythromycin-active substance and tablets, respectively, the determination of the kinetic parameters for the decomposition process under non-isothermal conditions. For the determination of kinetic parameters from the TG/DTG curves, were utilized the following methods: Friedman isoconversional, Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Li–Tang, and Kissinger, respectively, a dynamic nitrogen atmosphere and different heating rates: 2.5, 5, 7.5, 10, and 15 °C min−1. Thermoanalytical curves showed that the active substance is thermally more stable than the tablets and the values of activation energy indicate a considerable thermal stability of active substance. The decrease in stability was attributed to the presence of excipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang Z, Wang J, Dang L. Thermal, phase transition and spectral studies in erythromycin pseudopolymorphs: dihydrate and acetone solvate. Cryst Res Technol. 2006;41:1219–25.

    Article  CAS  Google Scholar 

  2. Manna PK, Kumaran V, Mohanta GP, Manavalan R. Preparation and evaluation of a new erythromycin derivative—erythromycin taurate. Acta Pharm. 2004;54:231–42.

    CAS  Google Scholar 

  3. Sheng J, Venkatesh GM, Duddu SP, Grant DJ. Dehydration behavior of eprosartan mesylate dihydrate. J Pharm Sci. 1999;88:1021–9.

    Article  CAS  Google Scholar 

  4. Cides LCS, Araújo AAS, Santos-Filho M, Matos JR. Thermal behaviour, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2006;84:441–5.

    Article  CAS  Google Scholar 

  5. Fini A, Fasio G, Benetti L, Ghedini V. Thermal analysis of some diclofenac salts with alkyl and alkylhydroxy amines. Thermochim Acta. 2007;464:65–74.

    Article  CAS  Google Scholar 

  6. Mora Corvi P, Cirri M, Mura P. Differential scanning calorimetry as a screening technique in compatibility studies of DHEA extended release formulations. J Pharm Biomed Anal. 2006;42:3–10.

    Article  CAS  Google Scholar 

  7. Neto HS, Barros FAP, de Sousa Carvalho FM, Matos JR. Thermal analysis of prednicarbate and characterization of thermal decomposition product. J Therm Anal Calorim. 2010;102:277–83.

    Article  Google Scholar 

  8. Macêdo RO, Aragão CFS, do Nascimento TG, Macêdo AMC. Application of thermogravimetry in the quality control of chloramphenicol tablets. J Therm Anal Calorim. 1999;56:1323–7.

    Article  Google Scholar 

  9. Moura EA, Correia LP, Pinto MF, Procopio JVV, de Sousa FS, Macedo RO. Thermal characterization of the solid state and raw material fluconazole by thermal analysis and pyrolysis coupled to GC/MS. J Therm Anal Calorim. 2010;100:289–93.

    Article  CAS  Google Scholar 

  10. Giordano F, Rossi A, Pasquali I, Bettini R, Frigo E, Gazzaniga A, Sangalli ME, Miles V, Catinella S. Thermal degradation and melting point determination of diclofenac. J Therm Anal Calorim. 2003;73:509–18.

    Article  CAS  Google Scholar 

  11. Picciochi R, Diogo HP, da Piedade MEM. Thermochemistry of paracetamol. J Therm Anal Calorim. 2010;99:391–401.

    Article  Google Scholar 

  12. Bannach G, Cervini P, Cavalheiro ETG, Ionashiro M. Using thermal and spectroscopic data to investigate the thermal behavior of epinephrine. Thermochim Acta. 2010;499:123–5.

    Article  CAS  Google Scholar 

  13. Iliescu T, Baia M, Miclăuş V. A Raman spectroscopic study of the diclofenac sodium–β-cyclodextrin interaction. Eur J Pharm Sci. 2004;22:487–95.

    Article  CAS  Google Scholar 

  14. Marini A, Berbenni V, Moioli S, Bruni G, Cofrancesco P, Margheritis C. Drug–excipient compatibility studies by physico-chemical techniques. The case of indomethacin. J Therm Anal Calorim. 2003;73:529–45.

    Article  CAS  Google Scholar 

  15. Marini A, Berbenni V, Pegoretti M, Bruni G, Cofrancesco P, Sinistri C, Villa M. Drug–excipient compatibility studies by physico-chemical techniques. The case of atenolol. J Therm Anal Calorim. 2003;73:547–61.

    Article  CAS  Google Scholar 

  16. Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly (tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99:551–61.

    Article  CAS  Google Scholar 

  17. Li X, Wu Y, Gu D, Gan F. Thermal decomposition kinetics of nickel (II) and cobalt (II) azo barbituric acid complex. Thermochim Acta. 2009;493:85–9.

    Article  CAS  Google Scholar 

  18. Howell BA. Utility of kinetic analysis in the determination of reaction mechanism. J Therm Anal Calorim. 2006;85:165–7.

    Article  CAS  Google Scholar 

  19. Nunes SR, Semaan SF, Riga TA, Cavalheiro GTE. Thermal behavior of verapamil hydrochloride and its association with excipients. J Therm Anal Calorim. 2009;97:349–53.

    Article  CAS  Google Scholar 

  20. Tiţa D, Fuliaş A, Tiţa B. Thermal stability of ketoprofen-active substance and tablets. Part 1. Kinetic study of the active substance under non-isothermal conditions. J Therm Anal Calorim. 2011;105:501–8.

    Article  Google Scholar 

  21. Tiţa B, Fuliaş A, Bandur G, Rusu G, Tiţa D. Thermal stability of ibuprofen. Kinetic study under non-isothermal conditions. Rev Roum Chim. 2010;55:553–8.

    Google Scholar 

  22. Tiţa B, Fuliaş A, Marian E, Tiţa D. Thermal behaviour of acetylsalicylic acid-active substance and tablets. Kinetic study under non-isothermal conditions. Rev Chim (Bucureşti). 2009;60:419–23.

    Google Scholar 

  23. Tiţa B, Fuliaş A, Marian E, Tiţa D. Thermal stability and decomposition kinetics under non-isothermal conditions of sodium diclofenac. Rev Chim (Bucureşti). 2009;60:524–8.

    Google Scholar 

  24. Tiţa B, Fuliaş A, Rusu G, Tiţa D. Thermal behaviour of indomethacin-active substance and tablets kinetic study under non-isothermal conditions. Rev Chim (Bucureşti). 2009;60:1210–5.

    Google Scholar 

  25. Tiţa B, Fuliaş A, Ştefănescu M, Marian E, Tiţa D. Kinetic study of decomposition of ibuprofen under isothermal conditions. Rev Chim (Bucureşti). 2011;62:216–21.

    Google Scholar 

  26. Tiţa B, Fuliaş A, Ştefănescu M, Marian E, Tiţa D. Kinetic study of sodium diclofenac under isothermal conditions. Rev Chim (Bucureşti). 2011;62:31–6.

    Google Scholar 

  27. Tiţa B, Fuliaş A, Tiţa D. Kinetic study of indomethacin under isothermal conditions. Rev Chim (Bucureşti). 2010;61:1037–41.

    Google Scholar 

  28. Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.

    Article  CAS  Google Scholar 

  29. Chrissafis K. Kinetics of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.

    Article  CAS  Google Scholar 

  30. Saha B, Maiti AK, Ghoshal AK. Model-free method for isothermal and non-isothermal decomposition kinetics analysis of PET sample. Thermochim Acta. 2006;444:46–52.

    Article  CAS  Google Scholar 

  31. Dickinson CF, Heal GR. A review of the ICTAC Kinetics Project, 2000: part 1. Isothermal results. Thermochim Acta. 2009;494:1–14.

    Article  CAS  Google Scholar 

  32. Dickinson CF, Heal GR. A review of the ICTAC Kinetics Project, 2000: part 2. Non-isothermal results. Thermochim Acta. 2009;494:15–25.

    Article  CAS  Google Scholar 

  33. Budrugeac P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim. 2002;68:131–9.

    Article  CAS  Google Scholar 

  34. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci. 1965;6C:183–7.

    Google Scholar 

  35. Flynn JH, Wall LA. A quick direct method for determination of activation energy from thermogravimetric data. J Polym Sci B. 1996;4:323–8.

    Article  Google Scholar 

  36. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  37. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  38. Akahira T, Sunose T. Res Rep Chiba Inst Technol. 1971;16:22–7.

    Google Scholar 

  39. Li RC, Tang BT. A new method for analysing non-isothermal thermoanalytical data from solid-state reactions. Thermochim Acta. 1999;325:43–6.

    Article  CAS  Google Scholar 

  40. Galwey KA. Magnitudes of Arrhenius parameters for decomposition reactions of solids. Thermochim Acta. 1994;242:259–64.

    Article  CAS  Google Scholar 

  41. Vlaev LT, Georgieva VG, Gospodinov GG. Kinetics of isothermal decomposition of ZnSeO3 and CdSeO3. J Therm Anal Calorim. 2005;79:163–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Fuliaş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marian, E., Tiţa, B., Jurca, T. et al. Thermal behaviour of erythromycin-active substance and tablets. J Therm Anal Calorim 111, 1025–1031 (2013). https://doi.org/10.1007/s10973-012-2284-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2284-8

Keywords

Navigation