Skip to main content
Log in

Influence of the relative humidity on aminosilane molecular grafting properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Functional coatings with amino groups are used in a wide range of biochemistry-related applications. A technological platform that takes advantage of the affinity between amino-functionalized coatings and biomolecules is the DNA microarray methodology. Reliability and reproducibility of the microarray data strongly depend on the quality of the substrate; therefore, a proper awareness of how the storage conditions affect the amino-functionalized coatings is necessary. In this work we have studied the influence of different relative humidity levels on amino-methyl-silane coatings prepared via sol–gel methodology. Drops of a buffer solution containing a luminescent dye have been deposited (or spotted) on the coating; the dye molecules react with the amino-groups and leave circular luminescent marks (spots) on the substrate surface. Shape and luminescence of the spots, as well as background signals, have been monitored using a microarray laser scanner. With the proposed protocol we have measured the changes of these variables due to different storage conditions. FT-IR measurements have been performed to investigate the related chemistry changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shin JH, Weinman SW, Schoenfisch MH (2005) Anal Chem 77:3494

    Article  CAS  Google Scholar 

  2. Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S (1997) Chem Mater 9:2354

    Article  CAS  Google Scholar 

  3. Tonlé IK, Diaco T, Ngameni E, Detellier C (2007) Chem Mater 19:6629

    Article  Google Scholar 

  4. Bakker E (2004) Anal Chem 76:3285

    Article  CAS  Google Scholar 

  5. Buso D, Palmer L, Bello V, Mattei G, Post ML, Mulvaney P, Martucci A (2009) J Mater Chem 19:2051–2057

    Article  CAS  Google Scholar 

  6. Dejeu J, Gauthier M, Rougeot P, Boireau W (2009) ACS Appl Mater Interfaces 1:1966

    Article  CAS  Google Scholar 

  7. Colilla M, Salinas AJ, Vallet-Regí M (2006) Chem Mater 18:5676

    Article  CAS  Google Scholar 

  8. Sivagnanam V, Song B, Vandevyver C, Gijs M (2009) Anal Chem 81:6509

    Article  CAS  Google Scholar 

  9. Jang LS, Liu HL (2009) Biomed Microdevices 11:331

    Article  CAS  Google Scholar 

  10. DeLouise LA, Miller BL (2004) Anal Chem 76:6915

    Article  CAS  Google Scholar 

  11. Martínez RV, Martínez J, Chiesa M, Garcia R, Coronado E, Pinilla-Cienfuegos E, Tatay S (2010) Adv Mater 22:588

    Article  Google Scholar 

  12. Buso D, Nairn KM, Gimona M, Hill AJ, Falcaro P (2011) Chem Mater 23(4):929

    Article  CAS  Google Scholar 

  13. Fattakhova-Rohlfing D, Wark M, Rathousky J (2007) Chem Mater 19:1640

    Article  CAS  Google Scholar 

  14. Calvo A, Angelomé PC, Sanchez VM, Scherlis DA, Williams FJ, Soler-Illia GJ (2008) Chem Mater 20:4661

    Article  CAS  Google Scholar 

  15. Hermanson GT (2008) Bioconjugate techniques. Academic Press, London

    Google Scholar 

  16. Venkatasubbarao S (2004) Trends Biotechnol 22:630

    Article  CAS  Google Scholar 

  17. Bunney EW, Bunney BG, Vawter MP, Tomita H, Li J, Evans SJ, Choudary PV, Myers RM, Jones EG, Watson SJ, Akil H (2003) Am J Psychiatry 160:657

    Article  Google Scholar 

  18. Schulze A, Downward J (2001) Nat Cell Biol 3:E190

    Article  CAS  Google Scholar 

  19. Schena M (2003) Microarray analysis. Wiley, Hoboken

    Google Scholar 

  20. Metwalli E, Haines D, Becker O, Conzone S, Pantano CG (2006) J Colloid Interface Sci 298:825

    Article  CAS  Google Scholar 

  21. Couzin J (2006) Science 313:1559

    Article  CAS  Google Scholar 

  22. Marshal E (2004) Science 306:630

    Article  Google Scholar 

  23. Draghici S, Khatri P, Eklund AC, Szallasi Z (2006) Trends Genet 22:101–109

    Article  CAS  Google Scholar 

  24. Sakka S (2005) Handbook sol–gel science and technology, volume III: applications of sol–gel technology. Kluwer, Norwell

    Google Scholar 

  25. Falcaro P, Costacurta S, Malfatti L, Takahashi M, Kidchob T, Casula MF, Piccinini M, Marcelli A, Marmiroli B, Amenitsch H, Schiavuta P, Innocenzi P (2008) Adv Mater 20(10):1864–1869

    Article  CAS  Google Scholar 

  26. Falcaro P, Malfatti L, Vaccari L, Amenitsch H, Marmiroli B, Grenci G, Innocenzi P (2009) Adv Mater 21:4932–4936

    Article  CAS  Google Scholar 

  27. Mei HL, Zhang Y (2006) Adv Mater 18:3094–3098

    Article  Google Scholar 

  28. Hessner MJ, Meyer L, Tackes J, Muheisen S, Wang X (2004) BMC Genomics 5:53

    Article  Google Scholar 

  29. Oliver B, Kimmel A (2006) Methods in enzimology. vol 410. DNA microarray. Elsevier, London

  30. Villanova L, Falcaro P, Carta D, Poli I, Hyndman R, Smith-Miles K (2010). IEEE Congr Evol Comput (CEC) 18–23 July:1–8. doi:10.1109/CEC.2010.5586165

  31. Rockland LB (1940) Anal Chem 32:1375–1376

    Article  Google Scholar 

  32. Costacurta S, Dal Maso G, Gallo R, Guglielmi M, Brusatin G, Falcaro P (2010) ACS Appl Mater Interfaces 2(5):1294–1298

    Article  CAS  Google Scholar 

  33. Falcaro P, Costacurta S, Mattei G, Amenitsch H, Marcelli A, Cestelli Guidi M, Piccinini M, Nucara A, Malfatti L, Kidchob T, Innocenzi P (2005) J Am Chem Soc 127:3838–3846

    Article  CAS  Google Scholar 

  34. Innocenzi P, Malfatti L, Kidchob T, Falcaro P, Cestelli Guidi M, Piccinini M, Marcelli A (2005) Chem Commun 18:2384–2386

    Article  Google Scholar 

  35. Innocenzi P, Malfatti L, Kidchob T, Falcaro P, Costacurta S, Piccinini M, Marcelli A, Morini P, Sali D, Amenitsch H (2007) J Phys Chem C 111(14):5345–5350

    Article  CAS  Google Scholar 

  36. Innocenzi P, Falcaro P, Grosso D, Babonneau F (2003) J Phys Chem B 107:4711–4717

    Article  CAS  Google Scholar 

  37. Falcaro P, Grosso D, Amenitsch H, Innocenzi P (2004) J Phys Chem B 108:10942–10948

    Article  CAS  Google Scholar 

  38. Tezuka T, Tadanaga K, Hayashi A, Tatsumisago M (2006) J Am Chem Soc 128:16470

    Article  CAS  Google Scholar 

  39. Okabayashi H, Shimizu I, Nisho E, O’Conner CJ (1977) Colloid Polym Sci 275:744

    Article  Google Scholar 

  40. Tezuka T, Tadanaga K, Hayashi A, Tatsumisago M (2008) Solid State Ion 179:1151

    Article  CAS  Google Scholar 

  41. Wang X, Lin K, Chan J, Cheng SJ (2005) Phys Chem B 109:1763

    Article  CAS  Google Scholar 

  42. Wang X, Tseng Y, Chan JC, Cheng SJ (2005) Catal 233:266

    Article  CAS  Google Scholar 

  43. Malfatti L, Kidchob T, Falcaro P, Costacurta S, Piccinini M, Guidi MC, Marcelli A, Corrias A, Casula MF, Amenitsch H, Innocenzi P (2007) Microp Mesop Mat 103:113–122

    Article  CAS  Google Scholar 

  44. Brinker CJ, Scherrer GW (1990) Sol-gel science: the physics and chemistry of sol–gel processing. Academic Press Inc, San Diego

    Google Scholar 

  45. Bearzotti A, Mio Bertolo J, Innocenzi P, Falcaro P, Traversa E (2004) J Eur Ceram Soc 24:1969–1972

    Article  CAS  Google Scholar 

  46. Innocenzi P, Falcaro P, Mio Bertolo J, Bearzotti A, Amenitsch H (2005) J Non Cryst Solids 351:1980–1986

    Article  CAS  Google Scholar 

  47. Falcaro P, Mio Bertolo J, Innocenzi P, Amenitsch H, Bearzotti A (2004) J Sol–Gel Sci Technol 32:107

    Article  CAS  Google Scholar 

  48. Jang K, Kim H (2007) J Sol–Gel Sci Technol 41:19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Fondazione di Venezia within the DICE project. Anna Meneghello is acknowledged for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Falcaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisi, F., Carta, D., Villanova, L. et al. Influence of the relative humidity on aminosilane molecular grafting properties. J Sol-Gel Sci Technol 60, 246–253 (2011). https://doi.org/10.1007/s10971-011-2492-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2492-x

Keywords

Navigation