Skip to main content
Log in

Actinides selective extractants coated magnetite nanoparticles for analytical applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

N,N,N′,N′-tetraoctyl diglycolamide (TODGA) and bis(2-ethylhexy)phosphoric acid (HDEHP) were coated on Fe3O4 nanoparticles under different chemical conditions. The TODGA-coated magnetite nanoparticles (Fe3O4@TODGA) captured representative actinides Am(III) and Pu(IV) at 3–4 M HNO3 with high efficiency. However, the HNO3 induced pre-organization of TODGA, before coating on the magnetite nanoparticles, was found to be important for the sorption of Am(III) and Pu(IV) ions. The Fe3O4@HDEHP particles exhibited selectivity toward Pu(IV), and Am(III) did not sorb from 3 to 4 M HNO3. The quantification of Pu(IV) preconcentrated on coated particles was carried out by removing the extractant coating in dioxane based scintillator, followed by liquid scintillation counting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Dios AS, Díaz-García ME (2010) Multifunctional nanoparticles: analytical prospects. Anal Chim Acta 666:1–22

    Article  Google Scholar 

  2. Huang D, Deng C, Zhang X (2014) Functionalized magnetic nanomaterials as solid-phase extraction adsorbents for organic pollutants in environmental analysis. Anal Methods 6:7130–7141

    Article  CAS  Google Scholar 

  3. Chen L, Li B (2012) Application of magnetic molecularly imprinted polymers in analytical chemistry. Anal Methods 4:2613–2621

    Article  CAS  Google Scholar 

  4. Decun S, Jiaxiu S, Sha L, Qingsh L, Youfeng H, Yuxiao W, Huijuan C (1996) Preparation of magnetic particle antibodies for radioimmunoassay and immunoradiometric assay of thyroid related hormones. J Radioanal Nucl Chem 206:189–200

    Article  Google Scholar 

  5. Rathi AK, Gawande MB, Pechousek J, Tucek J, Aparicio C, Petr M, Tomanec O, Kirkavova R, Travnicek Z, Varma RS, Zboril R (2016) Maghemite decorated with ultra-small palladium nanoparticles (γ-Fe2O3–Pd): applications in the Heck-Mizoroki olefination, Suzuki reaction and allylic oxidation of alkenes. Green Chem 18:2363–2373

    Article  CAS  Google Scholar 

  6. Gawande MB, Luque R, Zboril R (2014) The rise of magnetically recyclable nanocatalysts. ChemCatChem 6:3312–3313

    Article  CAS  Google Scholar 

  7. Himstedt HH, Yang Q, Dasi LP, Qian X, Wickramasinghe SR, Ulbricht M (2011) Magnetically activated micromixers for separation membranes. Langmuir 27:5574–5581

    Article  CAS  Google Scholar 

  8. Wang Y, Qi Y, Li Y, Wu J, Ma X, Yu C, Ji L (2013) Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase. J Hazard Mater 260:9–15

    Article  CAS  Google Scholar 

  9. Zhan S, Yang Y, Shen Z, Shan J, Li Y, Yang S, Zhu D (2014) Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles. J Hazard Mater 274:115–123

    Article  CAS  Google Scholar 

  10. Rezaei A, Khani H, Masteri-Farahani M, Rofouei MK (2012) A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 4:4107–4114

    Article  CAS  Google Scholar 

  11. Rathod PB, Pandey AK, Meena SS, Athawale AA (2016) Quaternary ammonium bearing hyper-crosslinked polymer encapsulation on Fe3O4 nanoparticles. RSC Adv 6:21317–21325

    Article  CAS  Google Scholar 

  12. Varve Z, Lai EPC, Li C, Li C, Sadi BB, Kramer GH (2012) Polymer-coated magnetic nanoparticles for rapid bioassay of 90Sr in human urine samples. J Radioanal Nucl Chem 292:1411–1415

    Article  CAS  Google Scholar 

  13. Majidnia Z, Idris A, Majid M, Zin RM, Ponraj M (2015) Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads. Appl Radiat Isot 105:105–113

    Article  CAS  Google Scholar 

  14. Akl ZF, El-Saeed SM, Atta AM (2016) In-situ synthesis of magnetite acrylamide amino-amidoxime nanocomposite adsorbent for highly efficient sorption of U(VI) ions. J Ind Eng Chem 34:105–116

    Article  CAS  Google Scholar 

  15. Bée A, Talbot D, Abramson S, Dupuis V (2011) Magnetic alginate beads for Pb(II) ions removal from wastewater. J Colloid Interface Sci 362:486–492

    Article  Google Scholar 

  16. Bagheri H, Roostaie A, Daliri R (2014) An electrospun magnetic nanocomposite for a facile micro-scaled analysis approach. Anal Methods 6:5838–5846

    Article  CAS  Google Scholar 

  17. Ballesteros-Gómez A, Rubio S (2009) Hemimicelles of alkyl carboxylates chemisorbed onto magnetic nanoparticles: study and application to the extraction of carcinogenic polycyclic aromatic hydrocarbons in environmental water samples. Anal Chem 81:9012–9020

    Article  Google Scholar 

  18. Ngomsik A-F, Bee A, Talbot D, Cote G (2012) Magnetic solid–liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Sep Purif Technol 86:1–8

    Article  CAS  Google Scholar 

  19. He FF, Wang HQ, Wang YY, Wang XF, Zhang HS, Li HL, Tang JH (2013) Magnetic Th(IV)-ion imprinted polymers with salophen schiff base for separation and recognition of Th(IV). J Radioanal Nucl Chem 295:167–177

    Article  CAS  Google Scholar 

  20. Chen L, Wang T, Tong J (2011) Application of derivatized magnetic materials to the separation and the preconcentration of pollutants in water samples. TrAC, Trends Anal Chem 30:1095–1108

    Article  CAS  Google Scholar 

  21. Lu A, Salabas E, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chemie Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  22. Nuñez L, Kaminski M, Bradley C, Buchholz BA, Nunez L, Landsberger S, Aase SB, Tuazon HE, Vandegrift GF et al (1995) Magnetically assisted chemical separation (MACS) process: preparation and optimization of particles for removal of transuranic elements. Argonne National Laboratory Argonne, Lemont

    Book  Google Scholar 

  23. Navratil J (2001) Pre-analysis separation and concentration of actinides in groundwater using a magnetic filtration/sorption method I. Background and concept. J Radioanal Nucl Chem 248:571–574

    Article  CAS  Google Scholar 

  24. Sadeghi S, Azhdari H, Arabi H, Moghaddam AZ (2012) Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples. J Hazard Mater 215:208–216

    Article  Google Scholar 

  25. Matthews SE, Parzuchowski P, Garcia-Carrera A, Grüttner C, Dozol JF, Böhmer V (2001) Extraction of lanthanides and actinides by a magnetically assisted chemical separation technique based on CMPO-calix[4]arenes Electronic supplementary information (ESI) available: full synthetic procedures and extraction studies. Chem Commun 5:417–418, http://www.rsc.org/suppdata/cc/b0/b009679m

  26. Li D, Egodawatte S, Kaplan DI et al (2016) Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater. J Hazard Mater 317:494–502

    Article  CAS  Google Scholar 

  27. El-Maghrabi HH, Abdelmaged SM, Nada AA, Zahran F, El-Wahab SA, Yahea D, Hussein GM, Atrees MS (2017) Magnetic graphene based nanocomposite for uranium scavenging. J Hazard Mater 322:370–379

    Article  CAS  Google Scholar 

  28. Nuñez L, Kaminski MD (1999) Transuranic separation using organophosphorus extractants adsorbed onto superparamagnetic carriers. J Magn Magn Mater 194:102–107

    Article  Google Scholar 

  29. Ambashta RD, Wattal PK, Singh S, Bahadur D (2006) Magnetic carrier for radionuclide removal from aqueous wastes: parameters investigated in the development of nanoscale magnetite based carbamoyl methyl phosphine oxide. Sep Sci Technol 41:925–942

    Article  CAS  Google Scholar 

  30. Kaur M, Zhang H, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle: actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942–11959

    Article  CAS  Google Scholar 

  31. Banerjee R, Katsenovich Y, Lagos L, Senn M, Naja M, Balsamo V, Pannell KH, Li CZ (2010) Functional magnetic nanoshells integrated nanosensor for trace analysis of environmental uranium contamination. Electrochim Acta 55:7897–7902

    Article  CAS  Google Scholar 

  32. Li N-N, Kang T-F, Zhang J-J, Lu L-P, Cheng S-Y (2015) Fe3O4@ ZrO2 magnetic nanoparticles as a new electrode material for sensitive determination of organophosphorus agents. Anal Methods 7:5053–5059

    Article  CAS  Google Scholar 

  33. Khayatian G, Hassanpoor S, Azar ARJ, Mohebbi S (2013) Spectrophotometric determination of trace amounts of uranium(VI) using modified magnetic iron oxide nanoparticles in environmental and biological samples. J Braz Chem Soc 24:1808–1817

    CAS  Google Scholar 

  34. O’hara MJ, Carter JC, MacLellan JA, Warner CL, Warner MG, Addleman RS (2011) Investigation of magnetic nanoparticles for the rapid extraction and assay of alpha-emitting radionuclides from urine: demonstration of a novel radiobioassay method. Health Phys 101:196–208

    Article  Google Scholar 

  35. Cui C, He M, Chen B, Hu B (2014) Chitosan modified magnetic nanoparticles based solid phase extraction combined with ICP-OES for the speciation of Cr(III) and Cr(VI). Anal Methods 6:8577–8583

    Article  CAS  Google Scholar 

  36. Vajda N, Kim C-K (2011) Determination of transuranium isotopes (Pu, Np, Am) by radiometric techniques: a review of analytical methodology. Anal Chem 83:4688–4719

    Article  CAS  Google Scholar 

  37. Qiao J, Hou X, Miró M, Roos P (2009) Determination of plutonium isotopes in waters and environmental solids: a review. Anal Chim Acta 652:66–84

    Article  CAS  Google Scholar 

  38. Nayak PK, Kumaresan R, Venkatesan KA et al (2014) Extraction behavior of Am(III) and Eu(III) from nitric acid medium in tetraoctyldiglycolamide-bis(2-ethylhexyl)phosphoric acid solution. Sep Sci Technol 49:1186–1191

    Article  CAS  Google Scholar 

  39. Sengupta A, Murali MS, Mohapatra PK (2013) A comparative study of the complexation of Am(III) and Eu(III) with TODGA in room temperature ionic liquid. J Radioanal Nucl Chem 298:405–412

    Article  CAS  Google Scholar 

  40. Shimojo K, Kurahashi K, Naganawa H (2008) Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalt Trans 37:5083–5088

  41. Yaita T, Herlinger AW, Thiyagarajan P, Jensen MP (2004) Influence of extractant aggregation on the extraction of trivalent f-element cations by a tetraalkyldiglycolamide. Solvent Extr Ion Exch 22:553–571

    Article  CAS  Google Scholar 

  42. Abécassis B, Testard F, Zemb T, Berthon L, Madic C (2003) Effect of n-octanol on the structure at the supramolecular scale of concentrated dimethyldioctylhexylethoxymalonamide extractant solutions. Langmuir 19:6638–6644

    Article  Google Scholar 

  43. Nave S, Modolo G, Madic C, Testard F (2004) Aggregation properties of N, N, N′, N′-tetraoctyl-3-oxapentanediamide (TODGA) in n-dodecane. Solvent Extr Ion Exch 22:527–551

    Article  CAS  Google Scholar 

  44. Chavan V, Thekkethil V, Pandey AK, Iqbal M, Huskens J, Meena SS, Goswami A, Verboom W (2014) Assembled diglycolamide for f-element ions sequestration at high acidity. React Funct Polym 74:52–57

    Article  CAS  Google Scholar 

  45. Chavan V, Patra S, Pandey AK, Thekkethil V, Iqbal M, Huskens J, Sen D, Mazumder S, Goswami A, Verboom W (2014) Understanding nitric acid-induced changes in the arrangement of monomeric and polymeric methacryloyl diglycolamides on their affinity toward f-element ions. J Phys Chem B 119:212–218

    Article  Google Scholar 

  46. Ansari SA, Pathak P, Mohapatra PK, Manchanda VK (2011) Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 112:1751–1772

    Article  Google Scholar 

  47. Sasaki Y, Tachimori S (2002) Extraction of actinides(III),(IV),(V),(VI), and lanthanides(III) by structurally tailored diamides. Solvent Extr Ion Exch 20:21–34

    Article  CAS  Google Scholar 

  48. Jensen MP, Yaita T, Chiarizia R (2007) Reverse-micelle formation in the partitioning of trivalent f-element cations by biphasic systems containing a tetraalkyldiglycolamide. Langmuir 23:4765–4774

    Article  CAS  Google Scholar 

  49. Tkac P, Vandegrift GF, Lumetta GJ, Gelis AV (2012) Study of the interaction between HDEHP and CMPO and its effect on the extraction of selected lanthanides. Ind Eng Chem Res 51:10433–10444

    Article  CAS  Google Scholar 

  50. Grimes TS, Jensen MP, Debeer-Schmidt L, Littrell K, Nash KL (2012) Small-angle neutron scattering study of organic-phase aggregation in the TALSPEAK process. J Phys Chem B 116:13722–13730

    Article  CAS  Google Scholar 

  51. Paul S, Pandey AK, Kumar P, Kaity S, Aggarwal SK (2014) Tailored bifunctional polymer for plutonium monitoring. Anal Chem 86:6254–6261

    Article  CAS  Google Scholar 

  52. Paul S, Pandey AK, Shah RV, Aggarwal SK (2015) Chemically selective polymer substrate based direct isotope dilution alpha spectrometry of Pu. Anal Chim Acta 878:54–62

    Article  CAS  Google Scholar 

  53. Paul S, Pandey AK, Shah RV, Bhushan KS, Aggarwal SK (2016) Polymer based sorbent materials for thermal ionization mass spectrometric determination of uranium (VI) and plutonium (IV) ions. J Anal At Spectrom 31:985–993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Shashikala Ojha is thankful to Dr Pradeepkumar K. S., Associate Director, HS&EG and Head RSSD, BARC and R. K. Gopalakrishnan, Head RHCS, RSSD, BARC for giving permission to carry out doctoral work and their keen interest in the present work. Authors are also thankful to Dr P. K. Pujari, Head Radiochemistry Division, BARC for his keen interest in the present work. Vivek Chavan is supported by Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science, ICT and Future Planning (NRF-2015H1D3A1066285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankararao Chappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, S., Chappa, S., Mhatre, A.M. et al. Actinides selective extractants coated magnetite nanoparticles for analytical applications. J Radioanal Nucl Chem 312, 675–683 (2017). https://doi.org/10.1007/s10967-017-5246-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5246-6

Keywords

Navigation