Skip to main content
Log in

Trace element concentration differences in regions of human brain by INAA

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Studies have shown that there is a potential relationship between the levels of trace elements in cerebral tissues and neurological disorders. However, there are few publications available on the elemental composition of these tissues as well as for different regions of the brain. The aim of this study was to investigate trace element differences in various regions of the human brain from an elderly population of normal individuals. Brain samples from 31 individuals of both genders, aged 51–95 years were provided by the Brain Bank of the Brazilian Aging Study Group of the São Paulo University, Medical School. The tissues from the regions of the hippocampus, cerebellum and frontal, parietal, temporal, occipital cortex were dissected using a titanium knife, ground, freeze-dried and then analyzed by instrumental neutron activation analysis (INAA). Samples and element standards were irradiated with a neutron flux at the IEA-R1 nuclear research reactor for Br, Fe, K, Na, Rb, Se and Zn determinations. One-way ANOVA test (p < 0.05) was used to compare the results which showed significant differences for several elements among the brain regions. Most of our brain analysis results agreed with the literature data. The results were also submitted for brain region classification by cluster analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wenstrup D, Ehmann WD, Maskesbery WR (1990) Brain Res 533:125–131

    Article  CAS  Google Scholar 

  2. Shcherbatykh I, Carpenter DO (2007) J Alzheimers Dis 11:191–205

    CAS  Google Scholar 

  3. Deibel MA, Ehmann WD, Marrkesbery WR (1996) J Neurol Sci 143:137–142

    Article  CAS  Google Scholar 

  4. Levy-Lahad E, Bird TD (1996) Ann Neurol 40:829–840

    Article  CAS  Google Scholar 

  5. Harman D (1993) Age 16:23–30

    Article  Google Scholar 

  6. Volicer L, Crino PB (1990) Neurobiol Aging 11:567–571

    Article  CAS  Google Scholar 

  7. Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ (1992) Proc Natl Acad Sci USA 89:1671–1675

    Article  CAS  Google Scholar 

  8. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) J Neurol Sci 158:47–52

    Article  CAS  Google Scholar 

  9. Andrási E, Varga I, Dózsa A, Réffy A, Nagy GJ (1994) Cherom Intell Lab Syst 22:107–114

    Article  Google Scholar 

  10. Bush AI (2003) Trends Neurosci 26:207–214

    Article  CAS  Google Scholar 

  11. Andrási E, Farkas E, Henning S, Reffy A, Bezúr L (1995) Arch Gerontol Geriatr 21:89–97

    Article  Google Scholar 

  12. Maynard CJ, Bush AI, Master CL, Cappai R, Qiao-Xin Li (2005) Int J Exp Path 86:147–159

    Article  CAS  Google Scholar 

  13. Kranda K, Kucera J, Bäule J (2006) J Radioanal Nucl Chem 3:555–559

    Article  Google Scholar 

  14. Zhang F, Liu NQ, Feng WY, Wang XF, Huang YY, He W, Chai ZF (2006) J Radioanal Nucl Chem 3:535–540

    Article  Google Scholar 

  15. Leite REP, Jacob-Filho W, Saiki M, Grinberg LT, Ferretti REL (2008) J Radioanal Nucl Chem 278:581–584

    Article  CAS  Google Scholar 

  16. Grinberg LT, Ferretti REL, Ferfel JM, Leite R, Pasqualucci CA, Rosemberg S, Nitrini R, Saldiva PHN, Jacob-Filho W (2007) Cell Tissue Bank 8:151–162

    Article  Google Scholar 

  17. Morris JC (1993) Neurology 43:2412–2414

    Article  CAS  Google Scholar 

  18. Konieczka P, Namiesnik J (2009) Quality assurance and analytical control in the analytical laboratory: a practical approach. CRC Press, New York, p 27

    Book  Google Scholar 

  19. James MF, Millst RW, Weaver DR (1992) Nucl Instrum Meth Phys Res A 313:277–282

    Article  Google Scholar 

  20. Andrási E, Nádasdi J, Molnar Zs, Bezur L, Ernyei L (1990) Biol Trace Elem Res 26–27:691–698

    Article  Google Scholar 

  21. Andrási E, Igaz S, Szoboszlai N, Farkas E, Ajtony Z (1999) Spectrochim Acta B 54:819–825

    Article  Google Scholar 

  22. Panayi AE, Spyrou NM, Iversen BS, White MA, Part P (2002) J Neurol Sci 195:1–10

    Article  CAS  Google Scholar 

  23. Ward NI, Mason JA (1987) J Radioanal Nucl Chem 113:515–526

    Article  CAS  Google Scholar 

  24. Panayi AE, Spyrou NM, Part P (2001) J Radioanal Nucl Chem 249:437–441

    Article  CAS  Google Scholar 

  25. Stedman JD, Spyrou NM (1997) J Radioanal Nucl Chem 217:163–166

    Article  CAS  Google Scholar 

  26. Bélavári Cs, Andrási E, Molnár Zs, Bertalan É (2005) Microchem J 79:367–373

    Article  Google Scholar 

  27. Duflow H, Maenhaut W, De Reuck J (1990) Chemom Intell Lab Syst 9:273–286

    Article  Google Scholar 

Download references

Acknowledgments

Authors are indebted to the São Paulo Research Foundation (FAPESP) and the Brazilian National Council for Scientific and Technological Development (CNPq) for the financial support. To the Brain Bank of the Brazilian Aging Study Group (BBBABSG) of the Medical School, São Paulo University for the brain samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saiki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saiki, M., Leite, R.E.P., Genezini, F.A. et al. Trace element concentration differences in regions of human brain by INAA. J Radioanal Nucl Chem 296, 267–272 (2013). https://doi.org/10.1007/s10967-012-2055-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2055-9

Keywords

Navigation