Skip to main content
Log in

Spectroscopic Studies on the Thermodynamics of the Complexation of Trivalent Curium with Propionate in the Temperature Range from 20 to 90 °C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamics of the stepwise complexation reaction of Cm(III) with propionate was studied by time resolved laser fluorescence spectroscopy (TRLFS) and UV/Vis absorption spectroscopy as a function of the ligand concentration, the ionic strength and temperature (20–90 °C). The molar fractions of the 1:1 and 1:2 complexes were quantified by peak deconvolution of the emission spectra at each temperature, yielding the log10 \( K_{n}^{\prime } \) values. Using the specific ion interaction theory (SIT), the thermodynamic stability constants log10 \( K_{n}^{0} (T) \) were determined. The log10 \( K_{n}^{0} (T) \) values show a distinct increase by 0.15 (n = 1) and 1.0 (n = 2) orders of magnitude in the studied temperature range, respectively. The temperature dependency of the log10 \( K_{n}^{0} (T) \) values is well described by the integrated van’t Hoff equation, assuming a constant enthalpy of reaction and \( \Updelta_{\text{r}} C^\circ_{{p,{\text{m}}}} = 0, \) yielding the thermodynamic standard state \( \left( {\Updelta_{\text{r}} H^\circ_{\text{m}} ,\Updelta_{\text{r}} S^\circ_{\text{m}} ,\Updelta_{\text{r}} G^\circ_{\text{m}} } \right) \) values for the formation of the \( {\text{Cm(Prop)}}_{n}^{3 - n} \), n = (1, 2) species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Final Report (2002) Arbeitskreis Auswahlverfahren Endlagerstandorte. W&S Druck GmbH, Köln

  2. Courdouan, A., Christl, I., Meylan, S., Wersin, P., Kretzschmar, R.: Isolation and characterization of dissolved organic matter from the Callovo–Oxfordian formation. Appl. Geochem. 22, 1537–1548 (2007)

    Article  CAS  Google Scholar 

  3. Courdouan, A., Christl, I., Meylan, S., Wersin, P., Kretzschmar, R.: Characterization of dissolved organic matter in anoxic rock extracts and in situ pore water of Opalinus Clay. Appl. Geochem. 22, 2926–2939 (2007)

    Article  CAS  Google Scholar 

  4. Silva, R.J., Bidoglio, G., Rand, M.H., Robouch, P., Wanner, H., Puigdomenech, I.: Chemical Thermodynamics of Americium, vol. 2. OECD, NEA-TDB, Amsterdam (1995)

    Book  Google Scholar 

  5. Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, vol. 5. Elsevier, Amsterdam (2003)

    Google Scholar 

  6. Klenze, R., Kim, J.I., Wimmer, H.: Speciation of aquatic actinide ions by pulsed laser spectroscopy. Radiochim. Acta 52/53, 97–103 (1991)

    Google Scholar 

  7. Edelstein, N.M., Klenze, R., Fanghänel, T., Hubert, S.: Optical properties of Cm(III) in crystals and solutions and their application to Cm(III) speciation. Coord. Chem. Rev. 250, 948–973 (2006)

    Article  CAS  Google Scholar 

  8. Wood, S.A.: The aqueous geochemistry of the rare-earth elements: critical stability constants for complexes with simple carboxylic acids at 25 °C and 1 bar and their application to nuclear waste management. Eng. Geol. 34, 229–259 (1993)

    Article  Google Scholar 

  9. Choppin, G.R., Graffeo, A.J.: Complexes of trivalent lanthanide and actinide ions. I. Outer-sphere ion pairs. Inorg. Chem. 4, 1254–1257 (1965)

    Article  CAS  Google Scholar 

  10. Wruck, D.A., Zhao, P., Palmer, C.E.A., Silva, R.J.: Stability quotients of neodymium acetate complexes from 20 to 70 °C by laser-induced photoacoustic spectroscopy. J. Solution Chem. 26, 267–275 (1997)

    Article  CAS  Google Scholar 

  11. Rao, L., Zanonato, P., Di Bernardo, P.: Interaction of actinides with carboxylates in solution: complexation of U(VI), Th(IV), and Nd(III) with acetate at variable temperatures. J. Nucl. Radiochem. Sci. 6, 31–37 (2005)

    CAS  Google Scholar 

  12. Zanonato, P., Di Bernardo, P., Bismondo, A., Rao, L., Choppin, G.R.: Thermodynamic studies of the complexation between neodymium and acetate at elevated temperatures. J. Solution Chem. 30, 1–18 (2001)

    Article  CAS  Google Scholar 

  13. Yeh, M., Riedner, T., Bray, K.L., Clark, S.B.: A spectroscopic investigation of temperature effects on solution complexation in the Eu3+–acetate system. J. Alloys Compd. 303–304, 37–41 (2000)

    Article  Google Scholar 

  14. Rao, L.: Thermodynamics of actinide complexation in solution at elevated temperatures: application of variable-temperature titration calorimetry. Chem. Soc. Rev. 36, 881–892 (2007)

    Article  CAS  Google Scholar 

  15. Kimura, T., Choppin, G.R.: Luminescence study on determination of the hydration number of Cm(III). J. Alloys Compd. 213/214, 313–317 (1994)

    Article  CAS  Google Scholar 

  16. Lindqvist-Reis, P., Klenze, R., Schubert, G., Fanghänel, Th.: Hydration of Cm3+ in aqueous solution from 20 to 200 °C. A TRLFS study. J. Phys. Chem. B 109, 3077–3083 (2005)

    Article  CAS  Google Scholar 

  17. Tian, G., Edelstein, N.M., Rao, L.: Spectroscopic properties and hydration of the Cm(III) aqua ion from 10 to 85 °C. J. Phys. Chem. A 115, 1933–1938 (2011)

    Article  CAS  Google Scholar 

  18. Chung, K.H., Klenze, R., Park, K.K., Paviet-Hartmann, P., Kim, J.I.: A study of the surface sorption process of Cm(III) on silica by time-resolved laser fluorescence spectroscopy (I). Radiochim. Acta 82, 215–219 (1998)

    CAS  Google Scholar 

  19. Skerencak, A., Panak, P.J., Hauser, W., Neck, V., Klenze, R., Lindqvist-Reis, P., Fanghänel, T.: TRLFS study on the complexation of Cm(III) with nitrate in the temperature range from 5 to 200 °C. Radiochim. Acta 97, 385–393 (2009)

    Article  CAS  Google Scholar 

  20. Skerencak, A., Panak, P.J., Neck, V., Trumm, M., Schimmelpfennig, B., Lindqvist-Reis, P., Klenze, R., Fanghänel, T.: Complexation of Cm(III) with fluoride in aqueous solutions in the temperature range from 20 to 90 °C. A joint TRLFS and quantum chemical study. J. Phys. Chem. B 114, 15626–15634 (2010)

    Article  CAS  Google Scholar 

  21. Kosmulski, M.: Chemical Properties of Material Surfaces. Marcel Dekker, Inc., New York (2001)

    Book  Google Scholar 

  22. Beitz, J.V., Hessler, J.P.: Oxidation state specific detection of transuranic ions in solution. Nucl. Technol. 51, 169–175 (1980)

    CAS  Google Scholar 

  23. Paviet, P., Fanghänel, T., Klenze, R., Kim, J.I.: Thermodynamics of curium(III) in concentrated electrolyte solutions: formation of sulfate complexes in NaCl/Na2SO4 solutions. Radiochim. Acta 74, 99–103 (1996)

    CAS  Google Scholar 

  24. Fanghänel, Th., Kim, J.I.: Spectroscopic evaluation of thermodynamics of trivalent actinides in brines. J. Alloys Compd. 271-273, 728–737 (1998)

    Article  Google Scholar 

  25. Majer, V., Sedlbauer, J., Hnedkovsky, L., Wood, R.H.: Thermodynamics of aqueous acetic and propionic acids and their anions over a wide range of temperatures and pressures. Phys. Chem. Chem. Phys. 2, 2907–2917 (2000)

    Article  CAS  Google Scholar 

  26. McRae, B.R., Patterson, B.A., Origlia-Luster, M.L., Sorenson, E.C., Woolley, E.M.: Thermodynamics of proton dissociation from aqueous 1-propanoic and 1-butanoic acids at temperatures 278.15 ≤ (T/K) ≤ 393.15 and pressure p = 0.35 MPa: apparent molar volumes and apparent molar heat capacities of aqueous solutions of the acids and their sodium salt. J. Chem. Thermodyn. 35, 301–329 (2003)

    Article  CAS  Google Scholar 

  27. Clayton, T.D., Byrne, R.H.: Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Res. 40, 2115–2129 (1993)

    Article  CAS  Google Scholar 

  28. Yao, W., Byrne, R.H.: Spectrophotometric determination of freshwater pH using bromocresol purple and phenol red. Environ. Sci. Technol. 35, 1197–1201 (2001)

    Article  CAS  Google Scholar 

  29. Raghuraman, B., Gustavson, G., Mullins, O.C., Rabbito, P.: Spectroscopic pH measurement for high temperatures, pressures and ionic strengths. AIChE J. 52, 3257–3265 (2006)

    Article  CAS  Google Scholar 

  30. Yamazaki, H., Sperline, R.P., Freiser, H.: Spectrophotometric determination of pH and its application to determination of thermodynamic equilibrium constants. Anal. Chem. 64, 2720–2725 (1992)

    Article  CAS  Google Scholar 

  31. Pankow, J.F.: Aquatic Chemistry Concepts. Lewis Publisher, Inc. (2001)

    Google Scholar 

  32. Lee, S.T., Gin, J., Nampoori, V.P.N., Vallabhan, C.P.G., Unnikrishan, N.V., Radhakrishan, P.: A sensitive fibre optic pH sensor using multiple sol–gel coatings. J. Opt. A Pure Appl. Opt. 5, 355–359 (2001)

    Article  Google Scholar 

  33. Tremaine, P., Zhang, K., Bénézeth, P., Xiao, C.: Ionization equilibria of acids and bases. In: Palmer, D.A., Fernandez-Prini, R., Harvey, A.H. (eds.) Aqueous Systems at Elevated Temperatures and Pressures. Elsevier, Amsterdam (2004)

Download references

Acknowledgments

The authors would like to thank the German Federal Ministry of Economics and Technology (BMWi) for financial support of this work under contract No. 02E10206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Skerencak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skerencak, A., Höhne, S., Hofmann, S. et al. Spectroscopic Studies on the Thermodynamics of the Complexation of Trivalent Curium with Propionate in the Temperature Range from 20 to 90 °C. J Solution Chem 42, 1–17 (2013). https://doi.org/10.1007/s10953-012-9945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-012-9945-x

Keywords

Navigation