Skip to main content

Advertisement

Log in

Does Computational Biology Help us to Understand the Molecular Phylogenetics and Evolution of Cluster of Differentiation (CD) Proteins?

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Cluster of differentiation (CD) is a group of proteins with highly immunological and medical importance, and some are established therapeutics. These membrane proteins are used to investigate of cell surface molecules of blood cells especially WBC. We selected a population of fifteen members with most medical importance, which includes CD2, CD4, CD5, CD6, CD7, CD9, CD14, CD16, CD19, CD22, CD28, CD33, CD36, CD38, and CD44 and performed in silico analysis using algorithm analysis and mathematical models. The results suggest that LEU (L) is well aligned. CD16 is rooted with CD22 and likewise, CD4 is closely related to CD44. Notably, highest number of highly conserved amino acids is recorded in CD22. WebLogo were formed up to 350 amino acid position and Met (M) is found to be tallest logo. Our results would be useful for upcoming researchers to obtain fundamental idea about the particular regions CD proteins which is having the structural and functional significance related to the evolutionary biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CD:

Cluster of differentiation

HLDA:

Human leukocyte differentiation antigens

HCDM:

Human cell differentiation molecules

MSA:

Multiple sequences alignment

References

  1. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) Nucleic Acids Res 38:W529–W533

    Article  CAS  Google Scholar 

  2. Beck G, Habicht G (1996) Sci Am 275:60–66

    Article  CAS  Google Scholar 

  3. Blundell TL, Sibanda BL, Montalvão RW, Brewerton S, Chelliah V, Worth CL, Harmer NJ, Davies O, Burke D (2005) Phil Trans R Soc B 361:413–423

    Article  Google Scholar 

  4. Bull World Health Organ (1984) IUIS-WHO Nomenclature Subcommittee 62:809-15

    Google Scholar 

  5. Castresana J (2000) Mol Biol Evol 17:540–552

    Article  CAS  Google Scholar 

  6. Chakraborty C, Roy SS, Hsu MJ, Agoramoorthy G (2012) Comput Methods Programs 108:860–872

    Article  Google Scholar 

  7. Chakraborty C, Agoramoorthy G, Hsu MJ (2011) PLoS ONE 6:e16580

    Article  CAS  Google Scholar 

  8. Chen ACH, Hsiao HCW, Tsai JJP (2009) Ninth IEEE international conference on bioinformatics and bioengineering. doi:10.1109/BIBE.2009.66

  9. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Nucleic Acids Res 31:3497–3500

    Article  CAS  Google Scholar 

  10. Crocker PR, Clark EA, Filbin M, Gordon S, Jones Y, Kehrl JH, Kelm S, Le Douarin N, Powell L, Roder J, Schnaar RL, Sgroi DC, Stamenkovic K, Schauer R, Schachner M, van den Berg TK, van der Merwe PA, Watt SM, Varki A (1998) Glycobiology 8(2):v

  11. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) Genome Res 14:1188–1190

    Article  CAS  Google Scholar 

  12. Deo N (1974) Graph theory with application to engineering and computer science. Prentice-Hall, Englewood Cliffs, NJ, p 480

  13. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Nucleic Acids Res 36:W465–W469

    Article  CAS  Google Scholar 

  14. Edgar RC (2004) Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  15. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA (1993) J Biol Chem 268:11811–11816

    CAS  Google Scholar 

  16. Fleming K, Kelley LA, Islam SA, MacCallum RM, Muller A, Pazos F, Sternberg MJE (2006) Philos Trans R Soc Lond B Biol Sci 361:441–451

    Article  CAS  Google Scholar 

  17. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N (2003) Bioinformatics 19:163–164

    Article  CAS  Google Scholar 

  18. Goldsmith-Fischman S, Honig B (2003) Protein Sci 12:1813–1821

    Article  CAS  Google Scholar 

  19. Helft L, Reddy V, Chen X, Koller T, Federici L, Fernández-Recio J, Gupta R, Bent A (2011) PLoS ONE 6(7):e21614

    Google Scholar 

  20. Hernandez-Caselles T, Martínez-Esparza M, Pérez-Oliva AB, Quintanilla-Cecconi AM, García-Alonso A, Alvarez-López DM, García-Peñarrubia P (2006) J Leukoc Biol 79:46–58

    Article  CAS  Google Scholar 

  21. Hillis DM, Bull JJ (1993) Syst Biol 42:182–192

    Google Scholar 

  22. Holmes S (2003) Stat Sci 18:241–255

    Article  Google Scholar 

  23. Horvath G, Serru V, Clay D, Billard M, Boucheix C, Rubinstein E (1998) J Biol Chem 273:30537–30543

    Article  CAS  Google Scholar 

  24. Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland science, New York

    Google Scholar 

  25. Karsten U (2002) CD176 workshop panel report. In: Mason D, Simmons D, Buckley C, Schwartz-Albiez R, Hadam M, Saalmuller A, Clark E, Malavasi F, Morrissey JA, Vivier E, et al. (eds) Leucocyte Typing VII, Oxford University Press, Oxford, UK

  26. Kobe B, Kajava AV (2001) Curr Opin Struct Biol 11:725–732

    Article  CAS  Google Scholar 

  27. Konig R, Zhou W (2004) Curr Issues Mol Biol 6:1–15

    CAS  Google Scholar 

  28. Kinoshita K, Nakamura H (2003) Curr Opin Struct Biol 13:396–400

    Article  CAS  Google Scholar 

  29. Kitchens RL (2000) Chem Immunol 74:61–82

    Article  CAS  Google Scholar 

  30. Kumar S, Hedges B (1998) Nature 392:917–920

    Article  CAS  Google Scholar 

  31. Latta RG (2008) Evol Appl 1:84–94

    Article  Google Scholar 

  32. Lian IB (2001) Fuzzy Sets Syst 122:443–449

    Article  Google Scholar 

  33. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York

    Google Scholar 

  34. Mak TW, Saunders ME (2006) The immune response. Basic and clinical principles. Elsevier Academic Press, Oxford, UK, pp 464–516

    Google Scholar 

  35. Morrissey JH (1997) CD guide for CD142. In: Kishimoto et al. (eds) Leucocyte typing VI: white cell differentiation antigens, Garland Publishing, Inc., New York, pp 1207–1208

  36. Mittal R, Jain BN, Patney RK (1994) Microelectron Reliab 34:1301–1310

    Article  Google Scholar 

  37. Nunes JA, Truneh A, Olive D, Cantrell DA (1996) J Biol Chem 271:1591–1598

    Article  CAS  Google Scholar 

  38. Orciani M, Trubiani O, Guarnieri S, Ferrero E, Di Primio R (2008) J Cell Biochem 105:905–912

    Article  CAS  Google Scholar 

  39. Sarhan MA, Pham TN, Chen AY, Michalak TI (2012) J Virol. doi:10.1128/JVI.06956-11

    Google Scholar 

  40. Schlossman SF, Boumsell L, Gilks W, Harlan JM, Kishimoto T, Morimoto C, Ritz J, Shaw S, Silverstein R, Springer T, Tedder TF, Todd, RF (eds) (1995) Leukocyte typing V: white cell differentiation antigens, Oxford University Press, Oxford

  41. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S, Feolo M, Fingerman IM, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, Wilbur WJ, Yaschenko E, Ye J (2011) Nucleic Acids Res 39:D38–D51

    Article  Google Scholar 

  42. Schneider TD, Stephens RM (1990) Nucleic Acids Res 18:6097–6100

    Article  CAS  Google Scholar 

  43. Stillwell R, Bierer BE (2001) Immunol Res 24:31–52

    Article  CAS  Google Scholar 

  44. Swack JA, Mier JW, Romain PL, Hull SR, Rudd CE (1991) J Biol Chem 266:7137–7143

    CAS  Google Scholar 

  45. Talavera G, Castresana J (2007) Syst Biol 56:564–577

    Article  CAS  Google Scholar 

  46. Thomas SN, Zhu F, Schnaar RL, Alves CS, Konstantopoulos K (2008) J Biol Chem 283:15647–15655

    Article  CAS  Google Scholar 

  47. Wilkins AL, Yang W, Yang JJ (2003) Curr Protein Pept Sci 4:367–373

    Article  CAS  Google Scholar 

  48. Zhang J, Dong J, Gu H, Yu S, Zhang X, Gou Y, Xu W, Burd A, Huang L, Miyado K, Huang Y, Chan HC (2012) J Invest Dermatol 132:226–236

    Article  CAS  Google Scholar 

  49. Zola H (2006) Mol Med 12:312–316

    CAS  Google Scholar 

  50. Zola H (2001) Expert Opin Biol Ther 1:375–383

    Article  CAS  Google Scholar 

  51. Zola H, Swart B, Nicholson I, Aasted B, Bensussan A, Boumsell L, Buckley C, Clark G, Drbal K, Engel P, Hart D, Horejsí V, Isacke C, Macardle P, Malavasi F, Mason D, Olive D, Saalmueller A, Schlossman SF, Schwartz-Albiez R, Simmons P, Tedder TF, Uguccioni M, Warren H (2005) Blood 106:3123–3126

    Article  CAS  Google Scholar 

  52. Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, Boumsell L, Buckley C, Bühring HJ, Clark G, Engel P, Fox D, Jin BQ, Macardle PJ, Malavasi F, Mason D, Stockinger H, Yang X (2007) J Immunol Methods 318:1–5

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the management of VIT University for providing the facilities to carry out this work.

Conflict of interest

The authors declare that we don’t have a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiranjib Chakraborty or C. George Priya Doss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 582 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, C., George Priya Doss, C., Sharma, R. et al. Does Computational Biology Help us to Understand the Molecular Phylogenetics and Evolution of Cluster of Differentiation (CD) Proteins?. Protein J 32, 143–154 (2013). https://doi.org/10.1007/s10930-013-9466-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9466-5

Keywords

Navigation