Skip to main content

Advertisement

Log in

The Phylogenetic Relationships of Eucynodontia (Amniota: Synapsida)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The phylogeny of Eucynodontia is an important topic in vertebrate paleontology and is the foundation for understanding the origin of mammals. However, consensus on the phylogeny of Eucynodontia remains elusive. To clarify their interrelationships, a cladistic analysis, based on 145 characters and 31 species, and intergrating most prior works, was performed. The monophyly of Eucynodontia is confirmed, although the results slightly differ from those of previous analyses with respect to the composition of both Cynognathia and Probainognathia. This is also the first numerical cladistic analysis to recover a monophyletic Traversodontidae. Brasilodon is the plesiomorphic sister taxon of Mammalia, although it is younger than the oldest mammals and is specialized in some characters. A monophyletic Prozostrodontia, including tritheledontids, tritylodontids, and mammals, is well supported by many characters. Pruning highly incomplete taxa generally has little effect on the inferred pattern of relationships among the more complete taxa, although exceptions sometimes occur when basal fragmentary taxa are removed. Taxon sampling of the current data matrix shows that taxon sampling was poor in some previous studies, implying that their results are not reliable. Two major unresolved questions in cynodont phylogenetics are whether tritylodontids are more closely related to mammals or to traversodontids, and whether tritylodontids or tritheledontids are closer to mammals. Analyses of possible synapomorphies support a relatively close relationship between mammals and tritylodontids, to the exclusion of traversodontids, but do not clearly indicate whether or not tritheledontids are closer to mammals than are tritylodontids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdala F (2007) Redescription of Platycraniellus elegans (Therapsida, Cynodontia) from the Early Triassic of South Africa, and the cladistic relationships of eutheriodonts. Palaeontology 50:591–618

    Article  Google Scholar 

  • Abdala F, Giannini NP (2002) Chiniquodontid cynodonts: systematic and morphometric considerations. Palaeontology 45:1151–1170

    Article  Google Scholar 

  • Abdala F, Ribeiro AM (2003) A new traversodontid cynodont from the Santa Maria Formation (Ladinian–Carnian) of southern Brazil, with a phylogenetic analysis of Gondwanan traversodontids. Zool J Linn Soc 139:529–545

    Article  Google Scholar 

  • Allin EF, Hopson JA (1992) Evolution of the auditory system in Synapsida (“mammal-like reptiles” and primitive mammals) as seen in the fossil record. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. Springer-Verlag, New York, pp 587–614

    Google Scholar 

  • Barghusen HR, Hopson JA (1970) Dentary-squamosal joint and the origin of mammals. Science 168:573–575

    Article  CAS  PubMed  Google Scholar 

  • Battail B (1991) Les Cynodontes (Reptilia, Therapsida); une phylogenie. Bull Mus Natl Hist Nat, Sect C, Sci terre paléontol géol minér 13:17–105

    Google Scholar 

  • Bonaparte JF (1963) Descripción del esqueleto postcraneano de Exaeretodon (Cynodontia-Traversodontidae). Acta Geol Lilloana 4:5–52

    Google Scholar 

  • Bonaparte JF (1966) Sobre las cavidades cerebral, nasal y otras estructuras del cráneo de Exaeretodon sp (Cynodontia, Traversodontidae). Acta Geol Lilloana 8:5–31

    Google Scholar 

  • Bonaparte JF, Barberena MC (2001) On two advanced carnivorous cynodonts from the Late Triassic of southern Brazil. Bull Mus Comp Zool 156:59–80

    Google Scholar 

  • Bonaparte JF, Martinelli AG, Schultz CL (2005) New information on Brasilodon and Brasilitherium (Cynodontia, Probainognathia) from the Late Triassic, southern Brazil. Rev Bras Paleontol 8:25–46

    Article  Google Scholar 

  • Bonaparte JF, Martinelli AG, Schultz CL, Rubert R (2003) The sister group of mammals: small cynodonts from the late Triassic of southern Brazil. Rev Bras Paleontol 5:5–27

    Google Scholar 

  • Brink AS (1988) Illustrated bibliographical catalogue of the Synapsida, Part 2. Handbook S Afr Geol Surv

  • Broom R (1912) On a new type of cynodont from the Stormberg. Ann S Afr Mus 7:334–336

    Google Scholar 

  • Crompton AW (1964) On the skull of Oligokyphus. Bull Brit Mus (Nat Hist) Geol 9:67–81

    Google Scholar 

  • Crompton AW (1972) Postcanine occlusion in cynodonts and tritylodontids. Bull Brit Mus (Nat Hist) Geol 21:29–71

    Google Scholar 

  • Crompton AW, Ellenberger F (1957) On a new cynodont from the Molteno Beds and the origin of the tritylodontids. Ann S Afr Mus 44:1–13

    Google Scholar 

  • Crompton AW, Jenkins FA Jr (1979) Origin of mammals. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic Mammals: the First Two-Thirds of Mammalian History. University of California Press, Berkeley, pp 59–73

    Google Scholar 

  • Crompton AW, Luo Z-X (1993) Relationships of the Liassic mammals Sinoconodon, Morganucodon oehleri, and Dinnetherium. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, New York, pp 30–44

    Google Scholar 

  • Cui G-H, Sun A-L (1987) Postcanine root-system in tritylodonts. Vertebr Palasiatica 25:245–259

    Google Scholar 

  • Datta PM, Das DP, Luo Z-X (2004) A Late Triassic dromatheriid (Synapsida: Cynodontia) from India. Ann Carnegie Mus 73:72–84

    Google Scholar 

  • Debry R (2005) The systematic component of phylogenetic error as a function of taxonomic sampling under parsimony. Syst Biol 54:432–440

    Article  PubMed  Google Scholar 

  • Donoghue MJ (1994) Progress and prospects in reconstructing plant phylogeny. Ann Mo Bot Gard 81:405–418

    Article  Google Scholar 

  • Fourie S (1974) The cranial morphology of Thrinaxodon liorhinus Seeley. Ann S Afr Mus 46:337–400

    Google Scholar 

  • Gauthier J (1986) Saurischian monophyly and the origin of birds. Mem Cal Acad Sci 8:1–55

    Google Scholar 

  • Gow CE (1980) The dentitions of the Tritheledontidae (Therapsida, Cynodontia). Proc Roy Soc London B 208:461–481

    Article  CAS  Google Scholar 

  • Gow CE (1981) Pachygenelus, Diarthrognathus and the double jaw articulation. Palaeontol Afr 24:15

    Google Scholar 

  • Gow CE (1986) A new skull of Megazostrodon (Mammalia: Triconodonta) from the Elliot Formation (Lowe Jurassic) of southern Africa. Palaeontol Afr 26:13–23

    Google Scholar 

  • Gow CE (1994) New find of Diarthrognathus (Therapsida: Cynodontia) after seventy years. Palaeontol Afr 31:51–54

    Google Scholar 

  • Hahn G, Hahn R, Godefroit P (1994) Zur Stellung der Dromatheriidae (Ober–Trias) zwischen den Cynodontia und den Mammalia. Geol Palaeontol 28:141–159

    Google Scholar 

  • Hahn G, Lepage JC, Wouters G (1984) Cynodontier–Zaehne aus der ober–Trias von Medernach, Grossherzoghum Luxemburg. Bull Soc Belg Géol 93:357–373

    Google Scholar 

  • Haughton SH, Brink AS (1954) A bibliographic list of the Reptilia from the Karoo beds of Africa. Palaeontol Afr 2:1–187

    Google Scholar 

  • Hauser DL, Presch W (1991) The effect of ordered characters on phylogenetic reconstruction. Cladistics 7:243–265

    Article  Google Scholar 

  • Hopson JA (1964) The braincase of the advanced mammal-like reptile Bienotherium. Postilla 87:1–30

    Google Scholar 

  • Hopson JA (1969) The origin and adaptive radiation of mammal-like reptiles and nontherian mammals. Ann NY Acad Sci 167:199–216

    Article  Google Scholar 

  • Hopson JA (1985) Morphology and relationships of Gomphodontosuchus brasiliensis von Huene (Synapsida, Cynodontia, Tritylodontoidea) from the Triassic of Brazil. Neues Jahrb Geol Paläontol Monatsh 1985(5):285–299

    Google Scholar 

  • Hopson JA (1991) Systematics of the non-mammalian Synapsida and implications for patterns of evolution in Synapsida. In: Schultze H-P, Trueb L (eds) Origins of the Higher Groups of Tetrapods: Controversy and Consensus. Cornell University Press, Ithaca and London, pp 635–693

    Google Scholar 

  • Hopson JA (1994) Synapsid evolution and the radiation of non-eutherian mammals. In: Prothero DR, Schoch RM (eds) Major Features of Vertebrate Evolution. The University of Tennessee Press, Knoxville, pp 190–219

    Google Scholar 

  • Hopson JA (2005) A juvenile gomphodont cynodont specimen from the Cynognathus Assemblage Zone of South Africa: implications for the origin of gomphodont postcanine morphology. Palaeontol Afr 41:53–66

    Google Scholar 

  • Hopson JA, Barghusen HR (1986) An analysis of therapsid relationships. In: Hotton N III, MacLean PD, Roth JJ, Roth EC (eds) The Ecology and Biology of Mammal-like Reptiles. Smithsonian Institution Press, Washington D.C., pp 83–106

    Google Scholar 

  • Hopson JA, Crompton AW (1969) Origin of mammals. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary Biology, Vol. 3. Appleton-Century-Crofts, New York, pp 15–72

    Google Scholar 

  • Hopson JA, Kitching JW (1972) A revised classification of cynodonts (Reptilia; Therapsida). Palaeontol Afr 14:71–85

    Google Scholar 

  • Hopson JA, Kitching JW (2001) A probainognathian cynodont from South Africa and the phylogeny of non-mammalian cynodonts. Bull Mus Comp Zool 156:5–35

    Google Scholar 

  • Jenkins FA Jr, Parrington FR (1976) The postcranial skeleton of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. Phil Trans Roy Soc Lond B 273:387–431

    Article  Google Scholar 

  • Kamiya H, Yoshida T, Kusuhashi N, Matsuoka H (2006) Enamel texture of the tritylodontid mammal-like reptile, occurred from the lower Cretaceous in central Japan. Materials Sci Engin C 26:707–709

    Article  CAS  Google Scholar 

  • Kearney M, Clark JM (2003) Problems due to missing data in phylogenetic analyses including fossils: a critical review. J Vertebr Paleontol 23:263–274

    Article  Google Scholar 

  • Kemp TS (1982) Mammal-like Reptiles and the Origin of Mammals. Academic Press, London and New York

    Google Scholar 

  • Kemp TS (1983) The relationships of mammals. Zool J Linn Soc 77:353–384

    Article  Google Scholar 

  • Kemp TS (2005) The Origin and Evolution of Mammals. Oxford University Press, Oxford

    Google Scholar 

  • Kemp TS (2007) The concept of correlated progression as the basis of a model for the evolutionary origin of major new taxa. Proc Roy Soc B 274:1667–1673

    Article  CAS  Google Scholar 

  • Kühne WG (1956) The Liassic therapsid Oligokyphus. British Museum (Natural History), London

    Google Scholar 

  • Lucas SG, Hunt AP (1994) The chronology and paleobiogeography of mammalian origins. In: Fraser NC, Sues H-D (eds) In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods. Cambridge University Press, Cambridge, New York, pp 335–351

    Google Scholar 

  • Lucas SG, Luo Z-X (1993) Adelobasileus from the Upper Triassic of West Texas; the oldest mammal. J Vertebr Paleontol 13:309–334

    Google Scholar 

  • Luo Z-X (1994) Sister-group relationships of mammals and transformations of diagnostic mammalian characters. In: Fraser NC, Sues H-D (eds) In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods. Cambridge University Press, Cambridge, New York, pp 98–128

    Google Scholar 

  • Luo Z-X (2001) The inner ear and its bony housing in tritylodontids and implications for evolution of the mammalian ear. Bull Mus Comp Zool 156:81–97

    Google Scholar 

  • Luo Z-X (2007) Transformation and diversification in early mammal evolution. Nature 450:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Luo Z-X, Crompton AW (1994) Transformation of the quadrate (incus) through the transition from non-mammalian cynodonts to mammals. J Vertebr Paleontol 14:341–374

    Google Scholar 

  • Luo Z-X, Crompton AW, Sun A-L (2001) A new mammaliaform from the Early Jurassic and evolution of mammalian characteristics. Science 292:1535–1540

    Article  CAS  PubMed  Google Scholar 

  • Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47:1–78

    Google Scholar 

  • Maddison DR, Maddison WP (2005) MacClade 4: analysis of phylogeny and character evolution, version 4.08. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Martinelli AG, Bonaparte JF, Schultz CL, Rubert R (2005) A new tritheledontid (Therapsida, Eucynodontia) from the Late Triassic of Rio Grande do Sul (Brazil) and its phylogenetic relationships among carnivorous non-mammalian eucynodonts. Ameghiniana 42:191–208

    Google Scholar 

  • Martinelli AG, Rougier GW (2007) On Chaliminia musteloides (Eucynodontia: Tritheledontidae) from the Late Triassic of Argentina, and a phylogeny of Ictidosauria. J Vert Paleontol 27:442–460

    Article  Google Scholar 

  • Martinez RN, May CL, Forster CA (1996) A new carnivorous cynodont from the Ischigualasto Formation (Late Triassic, Argentina), with comments on eucynodont phylogeny. J Vertebr Paleontol 16:271–284

    Google Scholar 

  • Olson EC (1944) Origin of mammals based upon cranial morphology of the therapsid suborders. Spec Papers, Geol Soc Amer 55:1–136

    Google Scholar 

  • Olson EC (1959) The evolution of mammalian characters. Evolution 13:44–353

    Article  Google Scholar 

  • Osborn HF (1886) Observations on the Upper Triassic mammals, Dromatherium and Microconodon. Proc Acad Nat Sci Philadelphia 37:359–363

    Google Scholar 

  • Osborn HF (1887) The Triassic mammals, Dromatherium and Microconodon. Proc Am Phil Soc 24:109–111

    Google Scholar 

  • Owen R (1871) Monograph of the Fossil Mammalia from the Mesozoic Formations. Paleontographical Society, London

    Google Scholar 

  • Pollock DD, Zwickl DJ, McGuire JA, Hillis DM (2002) Increased taxon sampling is advantageous for phylogenetic inference. Syst Biol 51:664–671

    Article  PubMed  Google Scholar 

  • Prendini L (2001) Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. Syst Biol 50:290–300

    Article  CAS  PubMed  Google Scholar 

  • Rice KA, Donoghue MJ, Olmstead RG (1997) Analyzing large data sets: rbcL 500 revisited. Syst Biol 46:554–563

    CAS  PubMed  Google Scholar 

  • Romer AS (1970) The Chanares (Argentina) Triassic reptile fauna VI: A chiniquodontid cynodont with an incipient squamosal-dentary jaw articulation. Breviora 344:1–18

    Google Scholar 

  • Rougier GW, Wible JR, Hopson JA (1992) Reconstruction of the cranial vessels in the Early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of the mammalian cranial vascular system. J Vertebr Paleontol 12:188–216

    Google Scholar 

  • Rowe T (1986) Osteological diagnosis of Mammalia, L. 1758, and its relationship to extinct Synapsida. PhD thesis, University of California, Berkeley

  • Rowe T (1988) Definition, diagnosis and origin of Mammalia. J Vertebr Paleontol 8:241–264

    Google Scholar 

  • Rowe T (1993) Phylogenetic systematics and the early history of mammals. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, New York, pp 129–145

    Google Scholar 

  • Seeley HG (1895) Researches on the structure, organization, and classification of the fossil Reptilia. Part IX, section 4. On the Gomphodontia. Phil Trans R Soc Lond B 186:1–57

    Article  Google Scholar 

  • Shubin NH, Crompton AW, Sues HD, Olsen PE (1991) New fossil evidence on the sister-group of mammals and early Mesozoic faunal distributions. Science 251:1063–1065

    Article  CAS  PubMed  Google Scholar 

  • Sidor CA, Hancox PJ (2006) Elliotherium kersteni, a new tritheledontid from the Lower Elliot Formation (Upper Triassic) of South Africa. J Paleont 80:333–342

    Article  Google Scholar 

  • Sidor CA, Smith RM (2004) A new galesaurid (Therapsida: Cynodontia) from the Lower Triassic of South Africa. Palaeontology 47:535–556

    Article  Google Scholar 

  • Simpson GG (1926a) Are Dromatherium and Microconodon mammals? Science 63:548–549

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG (1926b) Mesozoic Mammalia. V. Dromatherium and Microconodon. Am J Sci 12:87–108

    Google Scholar 

  • Simpson GG (1928) A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. Trustees of the British Museum, London

    Google Scholar 

  • Simpson GG (1929) American Mesozoic Mammalia. Mem Peabody Mus, Yale Univ 3:1–235

    Google Scholar 

  • Slowinski JB (1993) “Unordered” versus “ordered” characters. Syst Biol 42:155–165

    Google Scholar 

  • Soares MB (2004) Novos materiais de Riograndia guaibaensis (Cynodontia, Tritheledontidae) do Triásico Superior do Rio Grande do Sul, Brasil: analise osteológica e implicaçōes filogenéticas. Ph.D Thesis, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul

  • Strong EE, Lipscomb D (1999) Character coding and inapplicable data. Cladistics 15:363–371

    Article  Google Scholar 

  • Sues H-D (1985) The relationships of the Tritylodontidae (Synapsida). Zool J Linn Soc 85:205–217

    Article  Google Scholar 

  • Sues H-D (1986) The skull and dentition of two tritylodontid synapsids from the Lower Jurassic of western North America. Bull Mus Comp Zool 151:217–268

    Google Scholar 

  • Sues H-D (2001) On Microconodon, a Late Triassic cynodont from the Newark Supergroup of eastern North America. Bull Mus Comp Zool 156:37–48

    Google Scholar 

  • Sues H-D, Jenkins FA Jr (2006) The postcranial skeleton of Kayentatherium wellesi from the Lower Jurassic Kayenta Formation of Arizona and the phylogenetic significance of postcranial features in tritylodontid cynodonts. In: Carrano MT, Blob RW, Gaudin TJ, Wible JR (eds) Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles. The University of Chicago Press, Chicago, pp 114–152

    Google Scholar 

  • Sun A-L (1984) Skull morphology of the tritylodont genus Bienotheroides of Sichuan. Sci Sin, Ser B 27:970–984

    Google Scholar 

  • Watson DMS (1942) On Permian and Triassic tetrapods. Geol Mag 79:81–116

    Article  Google Scholar 

  • Wible JR (1991) Origin of Mammalia: the craniodental evidence reexamined. J Vertebr Paleontol 11:1–28

    Google Scholar 

  • Wible JR, Hopson JA (1993) Basicranial evidence for early mammal phylogeny. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, New York, pp 45–62

    Google Scholar 

  • Wible JR, Hopson JA (1995) Homologies of the prootic canal in mammals and non-mammalian cynodonts. J Vertebr Paleontol 15:331–356

    Google Scholar 

  • Wiens JJ (1998) The accuracy of methods for coding and sampling higher-level taxa for phylogenetic analysis: a simulation study. Syst Biol 47:397–413

    Article  CAS  PubMed  Google Scholar 

  • Wiens JJ (2003) Incomplete taxa, incomplete characters, and phylogenetic accuracy: is there a missing data problem? J Vertebr Paleontol 23:297–310

    Google Scholar 

  • Wiens JJ, Hollingsworth BD (2000) War of the iguanas: conflicting molecular and morphological phylogenies and long-branch attraction in iguanid lizards. Syst Biol 49:143–159

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson M (2003) Missing entries and multiple trees: instability, relationships, and support in parsimony analysis. J Vertebr Paleontol 23:311–323

    Article  Google Scholar 

  • Young CC (1947) Mammal-like reptiles from Lufeng, Yunnan, China. Proc Zool Soc Lond 117:537–597

    Google Scholar 

  • Zwickl DJ, Hillis DM (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 51:588–598

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank James Hopson, Hans-Dieter Sues, Marina Bento Soares, and especially Fernando Abdala for fruitful discussions. The comments from Zhe-Xi Luo, Fernando Abdala, Agustín G. Martinelli, and John R. Wible greatly improved this paper. The cooperation and hospitality of the staff of various museums and institutions greatly facilitated our comparative studies. We would like to thank Tom Kemp (Oxford University Museum of Natural History, UK); Ray Symonds (University Museum of Zoology, Cambridge, UK); Sandra Chapman (Natural History Museum, London, UK); Fernando Abdala and Bruce Rubidge (Bernard Price Institute for Palaeontological Research, Johannesburg, South Africa); Jennifer Botha and Elize Butler (National Museum, Bloemfontein, South Africa); Roger Smith and Sheena Kaal (Iziko Museums–South African Museum, Cape Town, South Africa); Johann Neveling (Council for Geosciences, Pretoria, South Africa); Stephany Potze (Transvaal Museum, South Africa); Ana Maria Ribeiro (Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre, Brazil); Maria C. Malabarba (Museu de Ciências e Tecnologia, Pontifïcia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil); Marina B. Soares and Cesar L. Schultz (Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil); Jaime E. Powell (Universidad Nacional de Tucumán, Argentina); Alejandro Kramarz and Agustín G. Martinelli (Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina); Guillermo F. Vega (Museo de Antropología, Universidad Nacional de La Rioja, Argentina); Ricardo Martinez (Museo de Ciencias Naturales, Universidad Nacional de San Juan, Argentina); Marcelo Reguero and Rosendo Pascual (Museo de La Plata, Argentina); Charles R. Schaff and Wu Shaoyuan (Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA), Hans-Dieter Sues and Matthew Carrano (National Museum of Natural History, Washington, D.C., USA), James A. Hopson (University of Chicago, Chicago, USA), Olivier Rieppel, Elaine Zeiger, and William F. Simpson (Field Museum of Natural History, Chicago, USA); and John Flynn (American Museum of Natural History, New York, USA). Special thanks to Corwin Sullivian for reading the manuscript and greatly improving the writing.

Financial support for this project was provided by Columbia University through a Faculty Fellowship, the Climate Center of Lamont-Dohert Earth Observatory, Theodore Roosevelt Memorial Fund of AMNH, and Chinese Academy of Sciences (KZCX2-YW-BR-07). The Field Museum provided grants that make possible a study visit to Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Appendices

Appendix I: List of Morphological Characters

The following abbreviations are used to identify authors that previously used a particular character in data matrices: R, (Rowe 1988); W, (Wible 1991); WH, (Wible and Hopson 1993); LL, (Lucas and Luo 1993); L, (Luo 1994); LC, (Luo and Crompton 1994); M, (Martinez et al. 1996); H, (Hopson and Kitching 2001); LCS, (Luo et al. 2001); B, (Bonaparte et al. 2003); S, (Sidor and Smith 2004); MA, (Martinelli et al. 2005), BO, (Bonaparte et al. 2005); SH, (Sidor and Hancox 2006); A, (Abdala 2007). The number following the abbreviation indicates the position of the character in the author’s matrix. Italics indicate that the definition of the character provided by the previous author(s) differs from that provided here. Asterisk indicates that the polarity of the character differs, or current states are part of the original states. A pound sign (#) preceding the character definition indicates that the character is ordered in some analyses.

Rostrum

  1. 1.

    #Premaxillary extranasal process: absent or with very little exposure (0); large but not contacting nasal (1); contacting nasal (2). [R2, W36, L82, M14, A1]

  2. 2.

    Septomaxilla facial process: long, extending far beyond posterior border of external naris (0); short, almost limited in external naris (1). [S1, A2]

  3. 3.

    #Snout in relation to temporal region: longer (0); subequal (1); shorter (2). [A11]

  4. 4.

    Position of paracanine fossa in relation to upper canine: anteromedial (0); medial or posteromedial (1); anterior (2); paracanine fossa absent (3). [A14*]

  5. 5.

    Premaxilla: does not form (0) or does form (1) posterior border of incisive foramen. [M19, H1, B21, BO27, MA24, A13]

  6. 6.

    Maxillary platform lateral to tooth row: absent (0); present (1). [M15, H77, BO15, A23]

  7. 7.

    Maxilla: excluded from (0) or participates in (1) border of subtemporal fenestra. [R15, W14, L62, M16, A21]

Skull roof

  1. 8.

    Profile of skull roof (relationship of sagittal crest with part of skull roof just anterior to it): nearly flat (0); remarkably concave (1); convex (2). [S7, A65]

  2. 9.

    Parietal foramen: present (0); absent (1). [R8, W12, LL34, L64, M31, H7, B24, BO34, MA28, A7]

  3. 10.

    Interparietal (postparietal) in adult: separate bone (0); absent or fused with other bones (1). [R21, W15, LL36, M34]

  4. 11.

    #Lateral expansion of braincase in parietal region: absent (0); moderate (1); well developed (2). [L67, M33]

  5. 12.

    Sagittal crest: does not (0) or does (1) extend posteriorly to reach or closely approach the posteriormost part of the lambdoidal crest.

Orbital region

  1. 13.

    Prefrontal: present (0); absent (1). [R4, W1, M28, H3, B22, BO30, MA25, A4]

  2. 14.

    #Postorbital: present and forms postorbital bar (0); present but does not form postorbital bar (1); absent (2). [R7, W2, LL33, L55, M29, H5, B23, B40, BO31, BO32, MA 50, A6]

  3. 15.

    #Palatine: does not meet frontal (0); meets frontal but neither element contributes significantly to medial orbit wall (1); meets frontal and both elements contribute significantly to medial orbit wall (2). [R6, R31, W17, W37, L56, L60, M24, M30, H23, B29, BO46, MA38, A63]

  4. 16.

    Sphenopalatine foramen: absent (0); present (1). [L57, M26]

Zygomatic arch

  1. 17.

    Dorsoventral height of zygomatic arch as a proportion of skull length: moderately deep (10∼18%) (0); very deep (>18%) (1); slender (<10%) (2). [R16, W40, L54, M39, H18, S5, BO40, MA33, A69]

  2. 18.

    Anteroventral corner of zygomatic arch: lies at same level as (0) or lies significantly higher than (1) postcanine line.

  3. 19.

    Infraorbital process: absent (0); suborbital angulation between maxilla and jugal (1); descending process of jugal (2). [M18, H21, H41, A25, B38, BO29, BO44, MA36, MA46, A70]

  4. 20.

    #Maximum dorsal extent of zygomatic arch: below middle of orbit (0); above middle of orbit but below upper border (1); above upper border of orbit (2). [H19]

  5. 21.

    Maximum posterior extent of jugal along zygomatic arch: near quadratojugal notch of squamosal (0); near squamosal glenoid (1); receding from glenoid (2). [L28]

  6. 22.

    Posteroventral process of jugal: low, forming less than half the height of the zygomatic arch (0); high, forming more than half the height of the zygomatic arch. [H20, BO43, A71]

  7. 23.

    Width of temporal fossa: greatest near middle (0); constant or nearly constant along its length (1); strongly increasing toward the posterior end (2). [H39, BO42, MA44, A74]

  8. 24.

    Squamosal groove for external auditory meatus: an incipient depression (0); deep (1). [M55, H22, B28, S18, BO45, MA37, A73]

  9. 25.

    Posterior extension of squamosal, dorsal to squamosal sulcus in zygomatic arch: incipient (0); well developed (1) [A72]

  10. 26.

    Notch separating lambdoidal crest from zygomatic arch: shallow (0); deep, V-shaped (1). [H43, S17, BO55, A75]

Palatal complex

  1. 27.

    Palatine: excluded from subtemporal border of orbit (0); participates in subtemporal border by displacing pterygoid posteriorly (1). [L58]

  2. 28.

    Vomer exposure in incisive foramen (at anterior ends of maxillae on palate): present (0); absent (1). [M21]

  3. 29.

    Vomer: with (0) or without (1) vertical septum extending posteriorly beyond level of secondary palate. [SH65]

  4. 30.

    Ectopterygoid: present, but does not contact maxilla (0); present and contacts maxilla (1); absent (2). [R32, H9, S15, A20]

  5. 31.

    Interpterygoid vacuity between pterygoid flanges: present (0); absent (1) in adults. [M27, H10, B25, BO35, MA29, A25]

  6. 32.

    Secondary palatal plate on maxilla: does not extend to midline (0); extends to midline (1). [H12, S11, A16]

  7. 33.

    Secondary palatal plate on palatine: does not extend to midline (0); extends to midline (1). [H13, S12, A16]

  8. 34.

    Osseous secondary palate: terminates well anterior to last upper postcanine tooth (0); terminates near or well posterior to last upper postcanine tooth (1). [R30, W16, L68, M23, LCS40, H14, B26, BO36, MA30, A18]

  9. 35.

    #Osseous secondary palate: terminates anterior to (0), at approximately the level of (1), or posterior to (2) anterior border of orbit. [H15, B27, BO38]

  10. 36.

    Anteroposterior extent of osseous secondary palate: 45% of skull length or less (0); more than 45% of skull length (1). [A17]

  11. 37.

    Contribution of palatine to osseous secondary palate: short (less than 1/3 anteroposterior length of osseous secondary palate) (0); long (greater than 1/3) (1) [M22, H40, B37, BO53, MA45, A19]

  12. 38.

    Middle of pterygoid: smooth (0); bears a boss (1); bears a distinct median crest (2). [LL12, L71, A26]

  13. 39.

    Nasopharyngeal roof posterior to transverse process of pterygoid: narrow, deep, forms a ventral keel (0); flat, minimum width greater than half width of transverse process of pterygoid (1).

  14. 40.

    Quadrate ramus of pterygoid: present (0); absent (1). [R38, W47, LC10, M40, H30, B34, BO52, S20, MA43, A30]

  15. 41.

    Quadrate articulation with quadrate ramus of epipterygoid: absent (0); present (1). [LC11, M53, A31]

Basicranium and lateral wall of braincase

  1. 42.

    Frontal-epipterygoid contact: present (0), absent (1). [R39, W48, L61, H35*, S24*, A64*]

  2. 43.

    Epipterygoid ascending process at level of trigeminal foramen: greatly expanded (0); moderately expanded (1). [H32*, B35*, A67*]

  3. 44.

    Anterior part of basisphenoid: narrow (0); wide, and width greater than half width of transverse process of pterygoid (1). [L69, LCS44]

  4. 45.

    Parasphenoid ala (basisphenoid wing): at same level as basicranium (0); ventrally expanded below basicranium (1). [H17, BO39, MA32, A29]

  5. 46.

    #Parasphenoid ala: long, bordering fenestra vestibuli (0); slightly shorter and excluded from fenestra vestibuli, but overlapping entire prootic pars cochlearis (a part of the petrosal) (1); much shorter and overlapping prootic pars cochlearis (2); basisphenoid does not overlap prootic pars cochlearis (3). [R40, W49, L74, M41, M49, LCS37, A28]

  6. 47.

    #Extent of basioccipital overlap on pars cochlearis: covers entire pars cochlearis (0); covers medial side of promontorium (1); no overlapping (2). [LCS38]

  7. 48.

    Internal carotid foramina in basisphenoid: present (0); absent (1). [R42, W50, WH23, LL14, L72, M45, H26, B31, BO48, MA40, A27]

  8. 49.

    Prootic and opisthotic: separate (0); fused at early ontogenetic stage to form petrosal (=periotic) (1). [R51, W5, WH29, L34, BO56, A37]

  9. 50.

    Promontorium: absent (0); present (1). [R52, W6, LL1, L35, LCS9, BO57, A35]

  10. 51.

    Internal auditory meatus: open (0); walled (1). [R53, W7, WH12, L39, M47, H36, B36, A38]

  11. 52.

    #Space for trigeminal ganglion (semilunar ganglion): open ventrally (0); partly floored by prootic (1); completely floored by prootic (2). [W54, A34]

  12. 53.

    Lateral trough floor anterior to tympanic aperture of prootic canal and/or primary facial foramen: absent (0); present (1). [R49, LL6, L43, M44, LCS 15*]

  13. 54.

    Vascular foramen in posterior part of lateral flange (Foramen “X” of Rougier et al. 1992: 205): absent (0); present (1). [LL30, L53, M43, LCS29]

  14. 55.

    Foramen and passage of prootic sinus in lateral trough: absent (0); present (1). [R50, W28, LL3, L45, MA49, BO58, A36]

  15. 56.

    Route of venous drainage from back of cavum epiptericum: only vascular groove on lateral flange (0); absent (1); vascular canal on lateral flange (foramina on lateral surface) (2). [W53, WH22, H27]

  16. 57.

    #Maxillary and mandibular branches (V2+3) of trigeminal nerve exit: via single foramen between prootic and epipterygoid (0); via two foramina between prootic and epipterygoid (1); via separate foramina, some enclosed by anterior lamina of prootic (petrosal) (2). [L50, M48, H28, B33 BO51, S27, MA42, A66]

  17. 58.

    Pterygoparoccipital foramen: squamosal does not contribute to enclosure of foramen (0); squamosal contributes to enclosure of foramen (1); open as a notch (2). [LL23, L51]

  18. 59.

    Lateral flange of prootic: lacks vertical component (0); includes vertical component, so that flange is L-shaped and forms vertical wall adjacent to pterygoparoccipital foramen. [L52, LCS25]

  19. 60.

    Anterior part of paroccipital process: lateral aspect covered by squamosal (0); lateral aspect exposed due to dorsal withdrawal of squamosal (1). [L47, LCS22]

  20. 61.

    Hyoid (stapedial) muscle fossa on paroccipital process: absent (0); present (1). [R55, W56, WH35, LL7, L40, M59, LCS32, MA48, BO61, A39]

  21. 62.

    Paroccipital process: undifferentiated (0); differentiated into a posterior process and a bulbous anterior process (1); differentiated into mastoid and quadrate processes (2). [R56, W18, L46, L47, M50, LCS21, LCS30, BO66, A44*]

  22. 63.

    Fenestra rotunda and jugular foramen: confluent (0); completely and widely separated (1). [R60, W29, LL10, L42, M46, HK42, LCS33, B39, BO60, A41]

  23. 64.

    Paroccipital process: does not contact quadrate (0); contacts quadrate (1). [R19, W41, M52, H29, A33]

Occipital region

  1. 65.

    Paroccipital process in base of posttemporal fossa: absent (0); present (1). [H24, A45]

  2. 66.

    Tabular: present (0); absent (1). [R22, LL19, L80, LCS 47]

  3. 67.

    Relationship of hypoglossal foramen (condylar foramen) with jugular foramen: confluent or sharing a depression (0); at least one foramen completely separated from jugular foramen (1). [LL11*, L75*, M51*, LCS39*, BO65]

  4. 68.

    Shape of occipital condyles (in lateral view): bulbous (0); ovoid to cylindrical (1). [LL15, L77, LCS51]

Craniomandibular joint

  1. 69.

    Rotation of dorsal plate relative to trochlear axis of quadrate: small (less than 10 degrees) (0); about 45 degrees (1); around 90 degrees (2); parallel to trochlear axis (3). [L30, LC1]

  2. 70.

    Contact facet on posterior side of dorsal plate of quadrate: flat or convex (0); concave (1). [L29, LC2, M56]

  3. 71.

    Trochlear condyles of quadrate: lateral condyle larger than medial condyle (0); medial condyle at least as large as lateral condyle (1). [LC3]

  4. 72.

    Shape of trochlea of quadrate: cylindrical (0); trough-shaped (1). [LC4]

  5. 73.

    #Lateral margin of dorsal plate of quadrate: straight (0); flaring posteriorly (1); flaring and rotated posteromedially (2). [LC5]

  6. 74.

    #Medial margin of dorsal plate of quadrate: straight (0); flaring anteriorly (1); flaring and rotated anterolaterally (2). [LC6]

  7. 75.

    Dorsal margin of dorsal plate of quadrate: with a pointed dorsal process (“dorsal angle”) (0); rounded (1) [L31, LC7]

  8. 76.

    #Lateral notch and neck of quadrate (separating lateral margin of contact facet from trochlea): lateral notch absent or poorly developed (0); lateral notch developed, separating lateral margin of contact facet from lateral end of trochlea (1); lateral notch broader, separation of lateral margin of contact facet from trochlea wider, lateral margin shifted medially (2); neck developed, displacing contact facet away from trochlea (3). [L32, LC8]

  9. 77.

    Articulation of quadrate with squamosal: via an anteriorly open and concave recess in the squamosal (0); anteriorly open squamosal recess is absent (1); quadrate having little or no contact with the squamosal (2). [WH7, LC12, M54, H31, A61]

  10. 78.

    Articulation of quadrate with stapes: via broad recess on medial margin and medial end of trochlea (0); stapedial contact restricted to medial end of trochlea (1); via projection from medial margin of dorsal plate (2); via medial vertical ridge on neck of quadrate (3); via projection from neck of quadrate (4). [R20, W42, L33, LC14]

  11. 79.

    Craniomandibular articulation: quadrate/articular (0); primarily quadrate/articular, secondarily surangular/squamosal (1); incipient dentary/squamosal (2); primarily dentary/squamosal (3). [R66, R67, W9, W60, L23, L24, M60, H25, LCS 70, B30, S19, BO26, MA39, A59]

  12. 80.

    Craniomandibular articulation: around dorsoventral level of postcanine line (0), much lower than postcanine line (1); much higher than postcanine line (2). [L25, A60].

  13. 81.

    Squamosal articular surface for mandible: absent (0); formed by small and medially or anteromedially facing facet (1); wide glenoid cavity directed approximately ventrally (2). [L26, B19, BO37, MA22, A58]

Mandible

  1. 82.

    Dentary symphysis: unfused (0); fused (1). [R68, W10, L19, LCS56, H44, B17, S34, BO21, MA21, A62]

  2. 83.

    #Lateral crest of dentary: absent (0); incipient (1); moderately developed (2); strongly projecting (3). [A48]

  3. 84.

    Angle of dentary: close to anteroposterior position of postorbital bar (0); close to jaw joint (1). [A55]

  4. 85.

    Anteroposterior position of dorsal contact between dentary–surangular, relative to postorbital bar and jaw joint: around midway between these landmarks (0); closer to jaw joint (1). [H48, A56]

  5. 86.

    Inner side of coronoid process (including coronoid bone): relatively thin (0); mediolaterally thick (1). [M66, H50, A52]

  6. 87.

    Splenial: large and deep, reaches ventral border of dentary (0); thin splint covering dentary groove (1). [M64]

  7. 88.

    #Postdentary bones: large, including tall surangular (0); angular, surangular, and prearticular medium in height and lying in dentary groove (1); single gracile rod in postdentary trough (2). [R74*, W59*, M65*, H49*]

  8. 89.

    Posterior extent of reflected lamina of angular: greater than 1/2 distance from angle of dentary to jaw joint (0); less than l/2 this distance (1). [H51]

  9. 90.

    #Reflected lamina of angular in lateral view: spoon-shaped plate bearing slight depressions (0); hook-like lamina (1); thin process (2) [M62, H52, S44, A57*]

  10. 91.

    Mandibular movement during occlusion inferred from wear facets: orthal movement during power stroke (0); posteriorly directed power stroke (1); moderate rotation along longitudinal axis during power stroke (2). [R79, W62, L2, LCS74*, B2, BO2]

Dentition

  1. 92.

    Postcanine occlusion: no consistent pattern of contact between upper and lower tooth rows (0); bilateral, interdigitating occlusion between multiple cusps (1); precise unilateral occlusion (2) [R84, R86, W33, L1, L14, M8, LCS 73, LCS 81, B1, BO1, MA1, A88]

  2. 93.

    Wear facets on postcanines: absent (0); simple longitudinal facet present on crown (1); main cusp bears two distinct facets (2); multiple cusps each bear one or two transverse and crescentic facets (3). [L17, B16, MA19, BO20]

  3. 94.

    Number of upper incisors: five or more (0); four (1); three or less (2). [R81, W63, L5, M1, H53, B3, S45, BO3, MA3, A76]

  4. 95.

    Number of lower incisors: four or more (0); three (1); two or less (2). [L5, M2, H54, B4, S46, BO4, MA4, A78]

  5. 96.

    Incisors: all small (0); some or all large (1). [H56, B5, B6, BO5, MA5, MA6, MA7, A79]

  6. 97.

    Incisor cutting margins: smoothly ridged (0); serrated (1); denticulated (2). [H55, A80]

  7. 98.

    Distinct diastema between upper incisor and canine: present (0); absent (1). [A82]

  8. 99.

    Upper canine: large (0); small (height <10% of skull length) (1); absent (2). [L6, H57, A84]

  9. 100.

    Lower canine: large (0); small (1); absent (2). [L6, H58, A85]

  10. 101.

    Canine serrations: absent (0); present (1). [H59*, A86*]

  11. 102.

    Upper postcanine: sectorial, lacking cingulum or with incipient lingual cingulum (0); sectorial, with well-developed lingual cingulum (1); bucco-lingually expanded (2). [L13, M5, M9, H60, H62, A7, S51, S55, B10, BO8, A90]

  12. 103.

    #Single-cusped tooth as anteriormost postcanine: present in juveniles and adults (0); present only in juveniles (1); absent (2).

  13. 104.

    #Gomphodont tooth as posteriormost postcanine: absent (0); absent in juveniles but present in adults (1); present in both juveniles and adults (2). [H80]

  14. 105.

    Main cusps of posterior postcanine teeth: not strongly curved (0); strongly curved (1). [S52, A91]

  15. 106.

    Upper postcanine roots: single (0); divided into two longitudinally aligned roots (1); multiple roots (more than two) (2). [R88, W65, W66, L9, M6, LCS77, B8, BO6, MA9, A96]

  16. 107.

    Lower postcanine roots: single (0); divided (1). [R88, W65, L9, M7, B8, BO6, MA9, A95]

  17. 108.

    Buccal (external) cingulum on sectorial upper postcanines: absent (0); present (1). [R85, H61, B9, BO7, MA10, A92]

  18. 109.

    Transverse crest in upper postcanines: absent (0); present with two cusps (1); present with three or more cusps (2) [H63, A93]

  19. 110.

    Position of transverse row of upper postcanines: midcrown (almost to posterior margin) (0); on anterior half of crown (1); at posterior margin of crown (no posterior cingulum) (2). [H64*]

  20. 111.

    Central cusp of transverse row of upper postcanines: absent (0); midway between buccal and lingual cusps (1); closer to lingual cusp (2). [H65]

  21. 112.

    Alignment of main cusps of upper postcanines: single longitudinal row (0); multiple cusps in multiple rows (1). [L13, LCS78]

  22. 113.

    Contacts between adjacent lower postcanines: simple, with no interlocking (0); distal cuspule of anterior molar fits into embayment between cusps of succeeding molar (1). [L11, B14, BO18]

  23. 114.

    Number of cusps in transverse row of lower postcanines: two (0); three or more (1). [H73]

  24. 115.

    Lingual cingulum on lower postcanine: present (0); vestigial or absent (1) [L12, LCS80, B11, B12, BO9, BO10, S56, A94]

  25. 116.

    Lower posterior basin: absent (0); present (1). [H75]

  26. 117.

    Axis of posterior part of maxillary tooth row: directed lateral to subtemporal fossa (0); directed toward center of fossa (1); directed toward medial rim of fossa and diverged curved (2); directed toward medial rim of fossa and straight (3). [R80, M12, H78, B13, MA17, MA20, BO14, BO16, BO17, A87]

  27. 118.

    Posterior end of upper tooth row: below orbit and anterior to subtemporal fenestra (0); anterior to orbit (1); posterior to anterior border of subtemporal fenestra (2). [H79, A76]

  28. 119.

    Postcanine replacement pattern: alternating (0); delayed (1); sequential addition of postcanines, no replacement (2). [L7, H81, LCS89, B7]

Postcranial skeleton

  1. 120.

    Vertebral centra: amphicoelous (0); platycoelous (1). [R108, H101, B51, BO78, MO61]

  2. 121.

    Axial centrum: cylindrical (0); depressed (1). [R98]

  3. 122.

    Dens: absent or vestigial (0); strongly developed (1) [R99]

  4. 123.

    Posterior thoracic vertebrae (or mid-dorsal vertebrae): neural spines nearly vertical or slightly inclined (0) or strongly inclined (1). [R102]

  5. 124.

    Anapophysis: absent (0); present (1).

  6. 125.

    Expanded costal plates on dorsal ribs: absent (0); present (1). [H82]

  7. 126.

    The ridge on lumbar costal plates overlapping preceding rib: absent (0); present (1). [H83]

  8. 127.

    #Acromion process: absent (0); weakly to moderately developed (1); strongly developed and close to level of glenoid (2). [R115*, H85*]

  9. 128.

    Scapular constriction below acromion: absent (0); present (1). [H86]

  10. 129.

    Scapular elongation between acromion and glenoid: absent (0); present (1). [H87, B41, BO68, MO51]

  11. 130.

    Procoracoid contribution to glenoid fossa: present (0); barely present or absent (1). [R116, H88, B42, BO 71, MO52]

  12. 131.

    Procoracoid contact with scapula: longer than coracoid contact (0); equal to or shorter than coracoid contact (1). [H89, B43, BO72, MO53]

  13. 132.

    Ectepicondylar foramen in humerus: present (0); absent (1). [R124, H90, B44, BO73, MO54]

  14. 133.

    Olecranon process of ulna: unossified or poorly ossified (0); well ossified (1). [R128, H91, B45, MO55]

  15. 134.

    Number of phalanges present in manual digit III: four (0); three (1). [H92]

  16. 135.

    Number of phalanges present in manual digit IV: four (0); three (1). [H93]

  17. 136.

    Dorsal profile of ilium in lateral view: strongly convex (0); straight to concave (1). [R130, H96, B48, BO75]

  18. 137.

    Length of anterior process of ilium anterior to acetabulum: less than 1.5 times diameter of acetabulum (0); greater than 1.5 times diameter of acetabulum (1). [H94*, B46*, BO74, MO56*]

  19. 138.

    Lateral surface of iliac blade: concave or nearly flat (0); convex (1); divided by longitudinal ridge into dorsal and ventral portions (1). [R131]

  20. 139.

    Posterior iliac spine: robust and extends beyond acetabulum (0); small nub that lies entirely anterior to acetabulum (1). [R132, R133]

  21. 140.

    Cotyloid (acetabular) notch: lies between ischial and iliac parts of acetabulum, but mainly on ilium (0); lies entirely on ischium, between acetabular facet and pubic process (1). [R134]

  22. 141.

    Diameter of obturator foramen: less than or equal to that of acetabulum (0): greater than that of acetabulum (1). [R139]

  23. 142.

    Head of femur: rounded and predominantly in plane of shaft (0); subspherical and inflected dorsally (1). [R141]

  24. 143.

    Greater trochanter of femur: continuous with femoral head (0); separated from femoral head by distinct notch (1). [R143, H98, B49, BO76, MO59]

  25. 144.

    Lesser trochanter: on ventromedial surface of femoral shaft (0); on medial surface of femoral shaft (1). [R144*, H100, B50, BO77, MO60]

  26. 145.

    Lesser trochanter: far distally from femoral head (0); near level of femoral head (1). [BO80, MO63]

Appendix II. Data Matrix

Distribution of the character-states for the characters listed in Appendix I among 31 taxa considered in this analysis. A=0&1, B=1&2, a=0/1, b=1/2. ?=unknown, dash=inapplicable

 

1

11111111112

2222222223

33333333334

4444444445

5555555556

6666666667

7777777778

 

1234567890

1234567890

1234567890

11234567890

1234567890

1234567890

1234567890

1234567890

Procynosuchus delaharpeae

0000000100

0000000000

0000000000

0000000000

0000000000

0000000000

0001A00000

0000000000

Galesaurus planiceps

0100000000

0000000010

0000100001

1000000000

0000000000

0000000000

0000000000

0000000100

Thrinaxodon liorhinus

01A0000000

0000000000

0000000000

1110000000

0000000000

0000000000

0000000000

0010010100

Platycraniellus elegans

0110000000

0000000011

0000000001

0110000000

??00000000

?000000000

0000000000

101??10100

Cynognathus crateronotus

0000000000

0000001021

0021100000

1110000101

1100010100

?000000000

0000100000

1110010110

Diademodon tetragonus

A000000000

0000001022

0121110001

1110000001

1100010100

000000A000

0000000000

0010010111

Trirachodon berryi

11100100A0

0000001121

0111110100

1110100201

1100010100

0000021000

0000000011

0111020110

Sinognathus gracilis

1020?10010

0000??1101

0011110?1?

1?1010?001

1000010100

???????000

00?000?011

0111020110

Langbergia modisei

0010000000

0000000121

0111110100

1110100001

10000101?0

?000?21??0

000000001?

0?11????10

Pascualgnathus polanskii

1020?10010

0000001122

012111011?

1110100001

??000101?0

???0?2?000

00???0?0??

????????a0

Luangwa drysdalli

??00?1000?

0000010121

001111????

1110?00001

???0010100

0000?2??00

000???0???

????????10

Massetognathus pascuali

0111110010

0000001101

0111110112

1110200001

0000010100

0000121100

0000000011

0111020110

Exaeretodon argentinus

0011111010

0000111121

0121110112

11101A0001

0?00010100

0100021100

00000000?1

01????0110

Scalenodon angustifrons

??10?1?000

0000??1101

012111????

?1101?0??1

??00010100

?000021100

0000?000??

0?????0?a0

“Scalenodon” hirschoni

???0010???

??001?11??

???1110112

11101?0?0?

0??00?????

???????1?0

00?0?????1

??1?0?0?a?

Chiniquodon theotonicus

1110101010

0000101011

000001011B

1111211001

1000010100

0000010000

00000000?1

?01???1110

Lumkuia fuzzi

??10001010

00000?0000

0000010?12

0110100101

0100010010

?000000100

0000000000

0010000110

Ectenion lunensis

001??00210

0000200000

0000000?1a

1110000201

1100010100

?100010100

0000000011

0011021110

Probainognathus jenseni

0110100210

0000100101

1000010112

1111101001

1100010000

0000110000

0000000011

0011021110

Prozostrodon brasiliensis

11?010?2??

??0121?1??

???????11?

?1111?1???

??????????

??????????

??????????

??????????

Therioherpeton cargnini

?????0?21?

11122?2100

??0???????

?1111?????

??????????

??????????

??????????

??????????

Riograndia guaibaensis

0113101211

111221?1??

??000??112

0111211011

0001020000

?000010200

0010001121

102?13????

Pachygenelus monus

2013101211

1112212100

1000000112

0111211011

0001020000

1000010200

00101??121

1022131320

Brasilodon quardangularis

a00??01211

1112212000

1000?00?12

011121?211

0001021001

?0?112220?

0011101121

1022131320

Tritylodon longaevus

102-111111

0112211102

0011110112

1110211211

0000110110

1101021211

1101101031

1022031202

Oligokyphus major

b??-1111?1

0112???102

010110?1?2

?1??21????

????110?10

110102?211

1101100031

0022031202

Bienotherium yunnanense

102-111111

01122111?2

01?1110112

1110211211

0000110110

110?02?011

11?110?031

??22131?02

Kayentatherium wellesi

102-11111?

0112211102

0111111112

0110211211

0000110110

1101021211

11?110?031

1022131202

Adelobasileus cromptoni

???????011

21?2??????

??????????

0??????211

0001021011

?211122100

00101110??

??????????

Sinoconodon rigneyi

0002?01011

2112212000

1000?01?12

1111211211

0011031011

?211122210

11101010??

??????0?30

Morganucodon oehleri

0?02?01011

2112212000

2?00001111

1111211211

0011032011

1211122201

1211111121

1022132430

 

8888888889

1

1111111111

1111111111

1111111111

1111111111

11111

 

1234567890

9999999990

0000000001

1111111112

2222222223

333333333

44444

  

1234567890

1234567890

1234567890

1234567890

41234567890

12345

Procynosuchus delaharpeae

0000000100

0000000100

010000000-

-00-000000

0000000-0

0000000000

00000

Galesaurus planiceps

0010000000

0001100100

000010000-

-00-100000

0001100???

?00??0??00

00000

Thrinaxodon liorhinus

0010000011

0001100000

010000000-

-00-100000

0001100-0

0000000000

?0000

Platycraniellus elegans

0?1010?0??

0001?0?100

000000000-

-0?-0?000?

??????????

??????????

?????

Cynognathus crateronotus

1120101112

0001101000

100010000-

-00-100100

0000111000

0001100000

00000

Diademodon tetragonus

1120101112

1131101000

1200100010

0100?00010

0001111000

0001100000

00000

Trirachodon berryi

1110101112

1131101000

1211100020

110100101?

??01111000

000????000

00000

Sinognathus gracilis

11101011??

1131200000

02?0?00?20

1100?0201?

??????????

??????????

?????

Langbergia modisei

1110101112

1131101000

1200100020

110100101?

????1?????

??????????

?????

Pascualgnathus polanskii

?1201011??

1132100000

02bb000-11

0100-12010

???1101??0

000??10000

00000

Luangwa drysdalli

11201011??

1131101000

12bb000-20

2100-12010

???1101100

00???11000

00000

Massetognathus pascuali

11B01011??

1131102111

0211000-22

2100-12010

0000101101

000??11000

00000

Exaeretodon argentinus

11211011??

1132110101

02bb000-12

0100-12210

0000001101

0011111000

00000

Scalenodon angustifrons

?12??011??

1131101000

12bb000-20

2100-1201?

??????????

??????????

?????

“Scalenodon” hirschoni

?1???011??

1132210010

02bb000-22

2100-1201?

??????????

??????????

?????

Chiniquodon theotonicus

1120101112

0001100000

000010000-

-00-100000

??00001101

0001110000

?0000

Lumkuia fuzzi

1120100012

0001100000

000010000-

-00-10000?

????001???

?????????0

?????

Ectenion lunensis

11001011??

0001100000

1a0010000-

-00-?00000

???1??110?

?0?????0??

?????

Probainognathus jenseni

2100101112

0001100000

010000000-

-00-001100

00?000110?

??0??11000

?0000

Prozostrodon brasiliensis

?0301111??

0000000000

110000000-

-00-001000

???000????

?0???11111

10000

Therioherpeton cargnini

??????????

000???????

?0?0?0000-

-00-?00000

??1?00????

?????11111

10011

Riograndia guaibaensis

00301111??

0012110011

00b000000-

-00-10100?

??????????

??????????

?????

Pachygenelus monus

2030111112

0012210010

001000010-

-00-002001

???0001111

101??11111

11111

Brasilodon quardangularis

?0301111??

0011100?01

011000010-

-01-00101?

?????0111?

?11???????

?????

Tritylodon longaevus

00311111??

1132210-22

-222-21-2-

1100-03221

??????210?

?????1????

?1111

Oligokyphus major

00311111??

1132110-22

-222-21-2-

1100-03221

11100?2101

111??11211

11111

Bienotherium yunnanense

00311111??

1132110-22

-222-21-2-

1100-03221

??????210?

?11??????1

11111

Kayentatherium wellesi

0031111112

1132110-22

-222-21-2-

1100-0322?

1110002101

1?1111121?

?1111

Adelobasileus cromptoni

??????????

??????????

?????0????

?0??1?????

??????????

??????????

?????

Sinoconodon rigneyi

20301112??

2001000001

001001110-

-00-10101?

??????????

??????????

?????

Morganucodon oehleri

2030111212

2221000001

011001110-

-01-001011

1111001111

111??11211

11111

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Olsen, P. The Phylogenetic Relationships of Eucynodontia (Amniota: Synapsida). J Mammal Evol 17, 151–176 (2010). https://doi.org/10.1007/s10914-010-9136-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-010-9136-8

Keywords

Navigation