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Abstract Heuristic rating estimation is a newly proposed method that supports decisions
analysis based on the use of pairwise comparisons. It allows the ranking values of some
alternatives (herein referred to as concepts) to be initially known, whilst ranks for other
concepts have yet to be estimated. To calculate themissing ranks it is assumed that the priority
of every single concept can be determined as the weighted arithmetic mean of the priorities
of all the other concepts. It has been shown that the problem has an admissible solution if
the inconsistency of the pairwise comparisons is not too high. The proposed approach adopts
heuristics according to which a weighted geometric mean is used to determine the missing
priorities. In this approach, despite increased complexity, a solution always exists and its
existence does not depend on the inconsistency or reciprocity of the input matrix. Thus,
the presented approach might be appropriate for a larger number of problems than previous
methods. Moreover, it turns out that the geometric approach, as proposed in the article, can
be optimal. The optimality condition is presented in the form of a corresponding theorem.
A formal definition of the proposed geometric heuristics is accompanied by two numerical
examples.
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1 Introduction

The first written evidence for the pairwise comparisons (PC) method dates back to the thir-
teenth century, when Ramon Llull fromMajorca wrote a seminal piece “Artifitium electionis
personarum” (The method for the elections of persons) about voting and elections [5,7], fol-
lowed by two subsequent works forming a practical study on election processes.1 Nowadays,
PC as a voting method is a way of deciding on the relative utility of alternatives used in deci-
sion theory [25] and other fields like economics [22], psychometrics and psychophysics [28]
and so on. PC theory is developed by many research teams in different fields and approaches.
Characteristic approaches can be noted, such as AHP–analytic hierarchy process proposed
and constantly developed by Saaty [25,27], the approximate PC reasoning [12,20], the issue
of incomplete PC relations [1], nonreciprocal PC relation properties [8], and the problem of
non-numerical rankings [11]. There are also many case studies and applications [13,19].

The heuristic rating estimation (HRE) method which enables the user to explicitly define
a reference set of concepts, for which the ranking values are a priori known, is currently being
developed [16,17]. The base heuristics used in HRE proposes to determine the relative values
of a single non-reference concept as a weighted arithmetic mean of all the other concepts.
This proposition leads to the linear equation system defined by the matrix A and the strictly
positive vector of constant terms b.

In this work, the authors show that using a geometric mean, rather than an arithmetic
one, to determine the relative priorities of concepts may in some cases be more convenient.
The main benefit of the proposed solution stems from the guarantee of the existence of a
solution.2 Hence, unlike the original proposal, a ranking list can be created for all even a non-
reciprocal matrices. This guarantee is paid for by an increase in computational complexity.
The presented solution is accompanied by two numerical examples.

The HRE approach can potentially be useful in many situation when the reference data
are available. In particular it might be interesting for the AHP users as a viable alternative
for the eigenvalue based [25] or the geometric mean method [6].

The presented work is a continuation of research initiated in [16,17]. It redefines the main
heuristics of HRE and the method of calculating the solution. The HRE approach proposed in
the previous articles is briefly outlined in (Sect. 2). There is also a short summary of a number
of important properties ofM-matrices (Sect. 2.3), which are essential to the properties of the
presented method. The next section (Sect. 3) describes the proposed solution and discusses
two important properties: solution existence (Sect. 3.2) and optimality (Sect. 3.3). These
theoretical considerations are accompanied by two meaningful examples showing how the
presented method can be used in practice (Sect. 4). A brief summary is provided in (Sect. 5).

2 Preliminaries

2.1 Basic concepts of pairwise comparisons method

The input for the PC method is the PC matrix M = (mi j ), where mi j ∈ R+ and i, j ∈
{1, . . . , n}. The values mi j and m ji represent subjective expert judgments as to the relative

1 See: The Augsburg Web Edition of Llull’s Electoral Writings.
2 It has been shown that for a reasonably small inconsistency the original (additive) HRE approach [17] also
provides a feasible solution [18].
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importance, utility or quality indicators of concepts ci and c j . Thus, according to the best
knowledge of experts, it should hold ci = mi j c j .

Definition 1 A matrix M is said to be reciprocal if for all i, j ∈ {1, . . . , n} it holds that
mi j = 1

m ji
, and M is said to be consistent if for all i, j, k ∈ {1, . . . , n} ismi j ·m jk ·mki = 1.

Since the data in the PC matrix represents subjective opinions of experts, they might be
inconsistent.Hence, theremayexist a triadmi j ,m jk,mki of entries inM forwhichmik ·mkj �=
mi j . This leads to a situation in which the relative importance of ci with respect to c j is
either mik · mkj or mi j . This observation underlies two related concepts: a priority deriving
method that transforms even an inconsistent matrixM into a consistent priority vector, and an
inconsistency index that describes to what extent the matrix M is inconsistent. The problem
of inconsistency has been addressed by Saaty in his seminal work [25], later intensively
studied also by other researchers [4,14]. There are a number of priority deriving methods
[9] and inconsistency indexes [2,3]. Following Saaty a good inconsistency indicator is the
principal eigenvalue of M .

Definition 2 Saaty’s inconsistency index S of n × n and (n > 2) reciprocal matrix M is
equal to

S (M)
d f= λmax − n

n − 1
(1)

where λmax is the principal eigenvalue of M .

According to [25] the matrix is sufficiently consistent whenS (M) ≤ 0.1 (the usual limit of
acceptability for the matrix 4 × 4 is 0.08 [see [26]]).

The result of the pairwise comparisons method is a ranking–a function that assigns values
to the concepts. Formally, it can be defined as follows.

Definition 3 The ranking function for C (the ranking of C) is a function μ : C → R+ that
assigns to every concept from C a positive value from R+.
Thus, μ(c) represents the ranking value for c ∈ C . The μ function is usually defined as

a vector of weights μ
d f= [μ(c1), . . . , μ(cn)]T . According to the most popular eigenvalue

based approach proposed by Saaty [25] the final ranking μev is determined as the principal
eigenvector of the PC matrix M , rescaled so that the sum of all its entries is 1, i.e.

μev =
[

μmax (c1)

sev
, . . . ,

μmax (cn)

sev

]T

and sev =
n∑

i=1

μmax (ci ) (2)

whereμev–the ranking function,μmax
d f= [μmax (c1), . . . , μmax (cn)]T—the principal eigen-

vector of M . Another popular approach proposes the rescaled geometric mean (GM) of rows
of M as the ranking result, i.e.

μgm =
[
p1
sgm

, . . . ,
pn
sgm

]T

(3)

where

pi =
⎛
⎝ n∏

j=1

mi j

⎞
⎠

1
n

and sgm =
n∑

i=1

⎛
⎝ n∏

j=1

mi j

⎞
⎠

1
n

(4)

It can be shown that for the fully consistent matrix M the ranking vectors μev and μgm are
identical.
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The geometric mean minimizes the sum of logarithmic errors e [6,10] given as:

e(μ(c1), . . . , μ(cn)) =
n∑

i=1

n∑
j=1

(
ln(mi j ) − ln

(
μ(ci )

μ(c j )

))2

(5)

Hence, a direct solving of a logarithmic least squares optimization problem can also be
used as the priority deriving procedure. As it will be shown later in (Sect. 3.3) under certain
conditions also the presented geometric approach minimizes (5). Thus, despite the fact that
the presented approach is a ranking procedure, it can serve as amethod of solving constrained
optimization problem.

A more complete overview including other priority deriving methods can be found in
[2,9].

2.2 Pairwise comparisons method with the reference set

Usually, when using the pairwise comparisons method, the ranking values μ(c1), . . . , μ(cn)
are initially unknown.Hence, they need to be determinedby the priority deriving procedure. In
some cases, however, there are concepts for which the priorities are known from elsewhere.
Hence, the decision makers may have additional knowledge about the group of elements
CK ⊆ C that allows them to determine μ(c) for CK in advance.

For example, let c1, c2 and c3 represent oil paintings that an auction house plans to put
up for auction. The sequence of paintings during the auction should correspond to their
approximate valuation. In order to determine the indicative price of paintings the auction
house asked experts to evaluate them in pairs, taking into account that two other paintings
from the same period of time were previously auctioned for μ(c4) and μ(c5).

The situation as described above prompted the first author [16,17] to propose a heuristic
rating estimation (HRE) model. According to HRE the set of concepts C is composed of
unknownconceptsCU = {c1, . . . , ck} andknown (reference) conceptsCK = {ck+1, . . . , cn},
where CU ,CK �= ∅ and CU ∩ CK = ∅. The values μ(ci ) for ci ∈ CK are known, whilst
the values μ(c j ) for elements c j ∈ CU need to be calculated. Following the heuristics of
averaging with respect to the reference values [17], the solution proposed by HRE is to adopt
as μ(c j ), for every c j ∈ CU , the arithmetic mean of all the other values μ(ci ) multiplied by
factor m ji :

μ(c j ) = 1

n − 1

n∑
i=1,i �= j

m jiμ(ci ) (6)

If the expert judgments gathered in the matrix M were fully consistent (Definition 1), then
every component of the sum (6) in the form m jiμ(ci ) would equal μ(c j ). Because they are
generally not, then every component is only an approximation of μ(c j ). Thus, the arithmetic
mean of the individual approximations has been adopted as the most probable value of
μ(c j ). To determine unknown values μ(c j ) for c j ∈ CU the problem, formalised as (6), can
be written down as the linear equation system Aμ = b, where:

A =

⎡
⎢⎢⎢⎣

1 · · · − 1
n−1m1,k

− 1
n−1m2,1 · · · − 1

n−1m2,k
...

. . .
...

− 1
n−1mk,1 · · · 1

⎤
⎥⎥⎥⎦ (7)
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and

b =

⎡
⎢⎢⎢⎣

1
n−1

∑n
i=k+1 m1,iμ(ci )

1
n−1

∑n
i=k+1 m2,iμ(ci )

...
1

n−1

∑n
i=k+1 mk,iμ(ci )

⎤
⎥⎥⎥⎦ (8)

The solution μ = [μ(c1), . . . , μ(ck)]T determines the values of μ for elements from CU .
Together with the known μ(ck+1), . . . , μ(cn), the vector μ forms the complete result list,
which after sorting can be used to build a ranking. Although the values μ(c) for c ∈ C are
called priorities, they usually have a specificmeaning. In the case of the previouslymentioned
example they represent the expected price of paintings.

According (Definition 3) the ranking results must be strictly positive, hence only strictly
positive vectors μ are considered to be feasible. It can be shown that the equation Aμ = b
has a feasible solution if A is strictly diagonally dominant by rows [17]. It has recently been
shown [18] that the equation has a feasible solution when the Koczkodaj’s inconsistency
index [14] is not to high.

2.3 M-matrices

Very often the real life problem can be reduced to the linear equation system Aμ = b, where
the matrix A has some special structure. Frequently the matrix A has positive diagonal and
nonpositive off-diagonal entries. Due to their importance in practice this type of matrix has
been especially thoroughly studied by researchers [23,24]. To define it formally a few more
notions and definitions are needed.

LetMR(n) be a set of n×n matrices overR, andMZ(n) the set of all A = [ai j ] ∈ MR(n)

with ai j ≤ 0 if i �= j and i, j ∈ {1, . . . , n}. Furthermore, assume that for every matrix
A ∈ MR(n) and vector b ∈ R

n the notation A ≥ 0 and b ≥ 0 will mean that every mi j

and bk are non-negative and neither A nor b equals 0. The spectral radius of A is defined as

ρ(A)
d f= max{|λ| : det(λI − A) = 0}.

Definition 4 An n×n matrix that can be expressed in the form A = s I −B where B = [bi j ]
with bi j ≥ 0 for i, j ∈ {1, . . . , n}, and s ≥ ρ(B), the maximum of the moduli of the
eigenvalues of B, is called anM-matrix.

Following [23] someM-matrix properties are recalled below in the form of the Theorem 1.

Theorem 1 For every A ∈ MZ(n) each of the following conditions is equivalent to the
statement: A is a nonsingular M-matrix.

1. A is inverse positive. That is, A−1 exists and A−1 ≥ 0
2. There exists a positive diagonal matrix D such that AD has all positive row sums.

It is worth noting that for everymatrix equation in the form Aμ = b, where A is a nonsingular
M-matrix, μ = A−1b holds. Since A−1 ≥ 0, b > 0 also implies that μ > 0.

3 HRE: geometric approach

3.1 Heuristics of the geometric averaging with respect to the reference values

The pairwise comparisons method is most often used to transform a PC matrix into a ranking
list of mutually compared concepts. During the transformation a priority is assigned to each
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concept. Therefore, this transformation is often called a priority deriving method. There are
many priority deriving methods. Besides the eigenvalue based method (2), where the ranking
values μ(ci ) are approximated as the arithmetic means of mi j · μ(c j ), the geometric mean
of rows is also used (3). This may suggest that for a ranking problem with the reference set
[17], the arithmetic mean (6) might also be replaced by the geometric mean. This observa-
tion prompted the author to formulate and investigate geometric averaging with respect to
reference values heuristics. According to this proposition the following non-linear equation
is used to determine the unknown values μ(c j ) for c j ∈ CU :

μ(c j ) =
⎛
⎝ n∏

i=1,i �= j

m jiμ(ci )

⎞
⎠

1
n−1

(9)

After raising both sides to the power of n− 1 the geometric averaging heuristics equation
(9) leads to a non-linear equation system in the form:

μn−1(c1) = m1,2μ(c2) · . . . . . . . . . . . . . . . . . . ·m1,nμ(cn)
μn−1(c2) = m2,1μ(c1) · m2,3μ(c3) · . . . · m2,nμ(cn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μn−1(ck) = mk,1μ(c1) · . . . . . . . . . . . . . ·mk,n−1μ(cn−1)

(10)

Of course, since the ranking values for ck+1, . . . , cn ∈ CK make a reference set where the
values μ(c j ) are known and fixed, some products in the form m jiμ(ci ) are initially known
constants. Let us denote:

g j =
n∏

i=k+1

m jiμ(ci ) (11)

for j = 1, . . . , k as the constant part of each Eq. (10). Thus, the non-linear equation system
can be written as:

μn−1(c1) = m1,2μ(c2) · . . . . . . . . . . . . . . . . . . ·m1,kμ(ck) · g1
μn−1(c2) = m2,1μ(c1) · m2,3μ(c3) · . . . · m2,kμ(ck) · g2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μn−1(ck) = mk,1μ(c1) · . . . . . . . . . . . . . ·mk,k−1μ(ck−1) · gk

Hence μ(c j ), mi j , g j ∈ R+, let us denote logξ μ(c j )
d f= μ̂(c j ), m̂i j

d f= logξ mi j and

ĝ j
d f= logξ g j for some ξ ∈ R+. It is easy to see that the above non-linear equation system is

equivalent to the following one:

(n − 1)μ̂(c1) = m̂1,2 + μ̂(c2) + · · · · · · + m̂1,k + μ̂(ck) + ĝ1
(n − 1)μ̂(c2) = m̂2,1 + μ̂(c1) + · · · · · · + m̂2,k + μ̂(ck) + ĝ2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(n − 1)μ̂(ck) = m̂k,1 + μ̂(c1) + · · · + m̂k,k−1 + μ̂(ck−1) + ĝk

(12)

By grouping all the constant terms on the right side of each above equation we obtain the
linear equation system

(n − 1)μ̂(c1) − ∑k
i=2 μ̂(ci ) = b1

(n − 1)μ̂(c2) − ∑k
i=1,i �=2 μ̂(ci ) = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(n − 1)μ̂(ck) − ∑k−1
i=1 μ̂(ci ) = bk

(13)

123



J Glob Optim (2015) 62:529–543 535

where bi
d f= ∑k

j=1, j �=i m̂1, j + ĝi for i = 1, . . . , k, which can be easily written down in the
matrix form

Âμ̂ = b (14)

where

Â =

⎡
⎢⎢⎢⎢⎣

(n − 1) −1 · · · −1
...

. . .
...

...
. . .

...

−1 −1 · · · (n − 1)

⎤
⎥⎥⎥⎥⎦ , (15)

μ̂ =

⎡
⎢⎢⎢⎣

μ̂(c1)
μ̂(c2)

...

μ̂(ck)

⎤
⎥⎥⎥⎦ , and b =

⎡
⎢⎢⎢⎣
b1
b2
...

bk

⎤
⎥⎥⎥⎦ (16)

Therefore, the solution μ̂ of the linear equation system (14) automatically provides the
solution to the original non-linear problem as formulated in (10). Indeed the ranking vector
μ can be computed following the formula:

μ =
[
ξ μ̂(c1), . . . , ξ μ̂(ck )

]T
(17)

Importantly, as is shown below, a feasible solution of (14) always exists. Hence, the heuristics
of averaging with respect to the geometric mean always provides the user with an appropriate
ranking function.

3.2 Existence of solution

The form of Â is specific. The positive diagonal and the negative off-diagonal real entries
mean that Â ∈ MZ(k) (see Sect. 2.3). Let us put:

D =
⎡
⎢⎣
1 · · · 0
...

. . .
...

0 · · · 1

⎤
⎥⎦

and D ∈ MR(k). Of course D is a positively dominant matrix. Thus, the product Â · D = Â.
The sum of each row in Â equals

(n − 1) +
k−1∑
i=1

(−1) = n − k

SinceCK is nonempty, its cardinality |CK | = n−k is greater than 0. This means that the sum
of each row of Â · D is positive. Hence, due to the Theorem 1, Â is a nonsingular M-matrix
(Definition 4), the rank of Â is k and also the rank of the extended matrix [ Â|b] is k. Thus,
Â−1 exists (i.e. μ̂ = Â−1b) and the equation (14) always has exactly one solution in Rk . Due
to the form of the solution to the main problem (17) and the fact that for any fixed x > 0 and
y > 0 the exponential function f (x) = x y is a bijection in R+, the existence and uniqueness
of solution of (14) implies the existence and uniqueness of solution of (10). Note that μ is a
vector in R

k+, i.e. each of its entries is strictly positive.
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It is worth noting that, similarly as the geometric meanmethod (3), the presented approach
provides a feasible solution also for non-reciprocal matrices. In other words, unlike the
original proposition [17], there is a guarantee that the heuristics of the geometric averaging
with respect to the reference values always provides a feasible ranking result to the user. 3

3.3 Optimality condition

One of the reasons for introducing the geometric mean method (3) is minimizing the multi-
plicative error ei j [9] defined as:

mi j = pi
p j

ei j (18)

In the case of the geometric averaging heuristics the multiplicative error equation takes the
form:

mi j = μ(ci )

μ(c j )
ei j (19)

The multiplicative error is commonly accepted to be log normal distributed (in the same way
the additive error would be assumed to be normally distributed). Let e : R

n+ → R be the
sum of multiplicative errors (5). As is shown in the Theorem below the heuristics (9) is often
optimal with respect to the value of the multiplicative error function e.

Theorem 2 The geometric averaging with respect to the reference values heuristics mini-
mizes the sum of multiplicative errors e(μ(c1), . . . , μ(cn)) if

μ(ci ) < (n − 1)
n∑

j=1, j �=i

μ(c j ) (20)

for i = 1, . . . , n.

Proof To determine the minimum of (5) let us forget for a moment that μ(ck+1), . . . , μ(cn)
are constants (the reference values), and let us treat them as any other arguments of e. In
order to determine the minimum of (5) the first derivative needs to be calculated. Thus,

∂e

∂μ(ci )
= 1

μ(ci )

⎛
⎝ n∑

r=1,r �=i

4(n − 1) lnμ(ci ) − 4
n∑

j=1, j �=i

lnμ(c j )

+2
n∑

r=1,r �=i

ln(mri ) − 2
n∑

j=1, j �=i

ln(mi j )

⎞
⎠ (21)

3 TheMonteCarlo tests recently carried out by the authors seem to indicate that the additiveHREapproach fails
for either non-reciprocal matrices (generalized PC matrices [15]), or the reciprocal PC matrices with the rela-

tively high inconsistency, especially when CK is small. For instance M =
⎛
⎜⎝

1 10 1 1
1/10 1 100 1
1 1/100 1 1,000
1 1 1/1,000 1

⎞
⎟⎠,

where CK = {c4} and μ(c4) = 1, makes the additive method fails (a resulting solution has negative values).
In this case the Saaty inconsistency index S (M) for M is greater than 15. Thus, in practice, such a matrix
would have never been considered as a base to create a ranking. At the moment it is shown that the additive
HRE provides a feasible solution when M is consistent enough [18].
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for i = 1, . . . , n. Due to the reciprocity of M , i.e. mi j = 1/m ji , the Eq. (21) can be written
as:

∂e

∂μ(ci )
= −4

(∑n
j=1, j �=i (lnμ(c j ) + ln(mi j )) − (n − 1) lnμ(ci )

μ(ci )

)
(22)

The function e reaches the minimum if ∂e/∂μ(ci ) = 0. This leads to the postulate that

n∑
j=1, j �=i

(lnμ(c j ) + ln(mi j )) − (n − 1) lnμ(ci ) = 0 (23)

for i = 1, . . . , n. Thus,

lnμ(ci ) = 1

n − 1

⎛
⎝ n∑

j=1, j �=i

lnmi jμ(c j )

⎞
⎠ (24)

which is directly equivalent to (9). In other words any solution to the equation system (10)
is a good candidate to be a minimum of (5). It remains to settle the matrix H of second
derivative of e. When H is positive definite then the solution of (10) actually minimizes the
function e. As a result of further differentiation is determined that the diagonal elements of
H are

∂2 f

∂μ(ci )∂μ(ci )
= 4(n − 1)

μ2(ci )
− 1

μ(ci )

∂ f

∂μ(ci )
(25)

where i = 1, . . . , n, and the other elements for which i �= j and i, j = 1, . . . , n take the
form:

∂2 f

∂μ(ci )∂μ(c j )
= − 4

μ(ci )μ(c j )
(26)

Since the matrix H is considered for e in the point (μ(c1), . . . , μ(cn)) such that (9) holds,
the first derivative of e is 0. Therefore, the Hessian matrix H takes the form:

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

4(n−1)
μ2(c1)

− 4
μ(c1)μ(c2)

· · · − 4
μ(c1)μ(cn)

...
4(n−1)
μ2(c2)

...
...

...
...

. . .
...

− 4
μ(cn)μ(c1)

− 4
μ(cn)μ(c2)

· · · 4(n−1)
μ2(cn)

⎤
⎥⎥⎥⎥⎥⎥⎦

(27)

According to [24, p. 29], if H is strictly diagonally dominant by rows, symmetrical, and
with positive diagonal entries, then it is also positive definite. To meet the first strict diagonal
dominance criterion (others are satisfied) it is required that:

∣∣∣∣ n − 1

μ2(ci )

∣∣∣∣ >

n∑
j=1, j �=i

∣∣∣∣− 1

μ(ci )μ(c j )

∣∣∣∣ (28)

for i = 1, . . . , n. Thus,

μ2(ci ) < (n − 1)μ(ci )
n∑

j=1, j �=i

μ(c j ) (29)

Since every μ(ci ) > 0, it is easy to verify that the above equation is equivalent to the
desired condition (20). 
�
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4 Numerical examples

The HRE method can be useful in many situations in which, based on expert subjective
opinions and actual data, new concepts, objects or entities need to be assessed. In order to
show how the method might work in practice the following two numerical examples are
presented. The first one, more abstract, discusses using the method to solve the non-linear
equation system. The second, more complex, tries to put the method into an actual business
context, where it can be successfully used.

In both examples the set of concepts consists of CK –the reference (known) and CU–the
initially unknown elements. The numerical results 4 were calculated using the PairwiseCom-
parisons MathematicaTM package.5

4.1 Example I (Scientific entities assessment)

Let c1, . . . , c5 represent research units,6 where two of them c2, c3 ∈ CK are the reference
units. Their values have been arbitrarily set by experts to µ(c2) = 5 and µ(c3) = 7, whilst
the other values μ(c1), μ(c4) and μ(c5) are considered unknowns. To determine the missing
values the experts compare c1, . . . , c5 in pairs and propose the valuesmi j defining the relative
priority of ci with respect to c j . An exception is the pair (c2, c3) for which the ratios m23 =
5/7 and m32 = 7/5 follow directly from the initially known values μ(c2) and μ(c3).

The expert analysis of the scientific achievements of the units c1, c4 and c5 leads to the
following PC matrix 7 M = [mi j ]:

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 3
5

4
7 2 16

7
5
3 1 5

7
5
2

10
3

7
4

7
5 1 7

2 4
1
2

2
5

2
7 1 4

3
7
16

3
10

1
4

3
4 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

Hence, for example, according to the expert judgment the relative priority of c1 with respect
to c2 is m12 = 3/5. Since the matrix is reciprocal it holds that mi j = 1/m ji .

In accordance with the proposed hypothesis (9), to calculate the rank using HRE with the
geometric averaging heuristics, the following system of non-linear equations (compare with
10) needs to be solved:

μ(c1) = (
m1,2μ(c2) · . . . . . . . . . . . . . . . . . . · m1,5μ(c5)

) 1
4

μ(c4) = (
m4,1μ(c1) · . . . · m4,3μ(c1) · m4,5μ(c5)

) 1
4

μ(c5) = (
m5,1μ(c1) · . . . . . . . . . . . . . . . . . . · m5,4μ(c4)

) 1
4

(31)

thus, after raising both sides of the equations to the power,

μ4(c1) = m1,2μ(c2) · . . . . . . . . . . . . . . . . . . ·m1,5μ(c5)
μ4(c4) = m4,1μ(c1) · . . . · m4,3μ(c1) · m4,5μ(c5)
μ4(c5) = m5,1μ(c1) · . . . . . . . . . . . . . . . . . . ·m5,4μ(c4)

(32)

4 Available on line at www.kulakowski.org/pc.
5 Freely available at www.kulakowski.org/pcpackage/.
6 In fact, the official ranking of research units in Poland compares them in pairs [13].
7 The values a priori known are written in bold.
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Substituting the logarithm of both sides of the equations, we get the following system:

4 lgμ(c1) = lg
(
m1,2μ(c2) · . . . . . . . . . . . . . . . . . . · m1,5μ(c5)

)
4 lgμ(c4) = lg

(
m4,1μ(c1) · . . . · m4,3μ(c1) · m4,5μ(c5)

)
4 lgμ(c5) = lg

(
m5,1μ(c1) · . . . . . . . . . . . . . . . . . . · m5,4μ(c4)

) (33)

which leads to the intermediate, linear logarithmic equation system:

4 lgμ(c1) − lgμ(c4) − lgμ(c5) = b1
− lgμ(c1) + 4 lgμ(c4) − lgμ(c5) = b4
− lgμ(c1) − lgμ(c4) + 4 lgμ(c5) = b5

(34)

where
b1

d f= lg
(
m1,2μ(c2)m1,3μ(c3)m1,4m1,5

)
b4

d f= lg
(
m4,1m4,2μ(c2)m4,3μ(c3)m4,5

)
b5

d f= lg
(
m5,1m5,2μ(c2)m5,3μ(c3)m5,4

) (35)

Then, according to the procedure proposed in (Sect. 3.1), the linear equation system (14)

where the unknown values µ̂(ci )
d f= lg (µ(ci )) for i = 1, 4, 5 takes the form:⎡

⎣ n − 1 −1 −1
−1 n − 1 −1
−1 −1 n − 1

⎤
⎦

⎡
⎣ μ̂(c1)

μ̂(c4)
μ̂(c5)

⎤
⎦ =

⎡
⎣ b1
b4
b5

⎤
⎦ (36)

hence, numerically: ⎡
⎣ 4 −1 −1

−1 4 −1
−1 −1 4

⎤
⎦

⎡
⎣ μ̂(c1)

μ̂(c4)
μ̂(c5)

⎤
⎦ =

⎡
⎣ 1.739

0.425
−0.064

⎤
⎦ (37)

Solving the linear equation system provides us with μ̂(c1) = 0.557, μ̂(c4) = 0.295
and μ̂(c5) = 0.197 which leads to the desired result 10μ̂(c1) = 3.613, 10μ̂(c4) = 1.973
and 10μ̂(c5) = 1.574. The non-scaled weight vector μ supplemented by the known values
μ(c2) = 5 and μ(c3) = 7 takes the form:

μ = [3.613, 5, 7, 1.973, 1.574]T (38)

and after rescaling:
μn = [0.189, 0.261, 0.365, 0.103, 0.0822]T (39)

Note that |CU | = 3 implies that the dimensions ofmatrix Â are 3×3,moreover det( Â) �= 0
and µ(ci ) > 0 for i = 1, 4, 5 (see Sect. 3.2). The inconsistency index is S (M) = 0.003 <

0.1. Thus, according to Saaty criterion, the matrix is consistent enough to be a reliable input
to the ranking procedure.

Forgetting for a moment that the values μ(c2) and μ(c3) are known, the ranking for
c1, . . . , c5 can be calculated on the basis of M only using the eigenvalue based and geometric
mean methods (2, 4). The appropriate (scaled) weight vectors are: μev ≈ μgm = [0.189,
0.274, 0.35, 0.103, 0.082]T . Solving the logarithmic least square optimization problem (5)
using the Nelder-Mead method [21] with constraints μ(c2)/μ(c3) = 5/7 and μ(c1) >

0, . . . , μ(c5) > 0, leads to the priorities μnm = [0.189, 0.261, 0.365, 0.103, 0.0822]T . The
weight vector obtained using the HRE additive method [17] is μHREa = [0.19, 0.26, 0.364,
0.103, 0.0824]T .

It is worth to note that all the rankings preserve the same order of preferences, i.e. c3 gets
the highest rank, next there are c2, c1, c4 and c5. They differ in the numeric details. As can
be expected (Sect. 3.3) the vectors μn and μnm are almost identical.
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4.2 Example II (Choosing the best TV show)

A certain TV broadcaster wants to produce a new entertainment TV show in a European
country. It considers purchasing the license for one of five different entertainment shows
produced in theUnited States. So far in Europe three similar programs have been broadcasted.
Through market research the approximate size of their European audience is known. They
are 5,500,000, 4,500,000 and 4,950,000 persons for programs c6, c7 and c8 respectively.
The production costs of these programs are similar. In order to select possibly the most
profitable TV show the station hires a few seasoned media experts. During the expert panel
they prepare the following PC matrix M , representing the relative attractiveness of all the
considered programs.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.8 0.968 0.7 0.5 0.682 0.908 0.667
1.25 1 1.211 0.994 0.757 0.75 1.27 0.833
1.033 0.826 1 0.821 0.551 0.704 0.826 0.625
1.429 1.006 1.218 1 0.714 0.857 1.050 0.952
2 1.321 1.817 1.401 1 1.2 1.467 1.333

1.467 1.333 1.42 1.167 0.833 1 1.222 1.111
1.101 0.8 1.211 0.952 0.682 0.818 1 0.909
1.499 1.2 1.6 1.05 0.75 0.9 1.1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

In the matrix M every entry mi j corresponds to a ratio describing attractiveness of the TV
show ci with respect to the attractiveness of TV show c j . Since the values of attractiveness
for c6, c7 and c8 are known (they are approximated by the number of people watching the
given TV show), thus the appropriate ratiosmi j for i, j = 6, 7, 8 are not the subject of expert
judgment. Instead, they are calculated based on data from market research. For example:

m6,7 = μ(c6)

μ(c7)
= 5,100,000

4,500,000
= 1.222 (41)

or

m6,8 = μ(c6)

μ(c8)
= 5,100,000

4,950,000
= 1.111 (42)

The other entries of M represent the subjective judgements of experts.
Like before, to find a solution with the help of HRE supported by the geometric aver-

aging heuristics, the system of equations (10) must be solved. The desired values µ(ci ) for
i = 1 . . . , 5 will be derived from the formula μ̂(ci ) = logµ(ci ). Because |CU | = 5, the
dimensions of matrix Â are 5 × 5. The linear equation system need to be solved as follows:

⎡
⎢⎢⎢⎢⎣

n − 1 −1 −1 −1 −1
−1 n − 1 −1 −1 −1
−1 −1 n − 1 −1 −1
−1 −1 −1 n − 1 −1
−1 −1 −1 −1 n − 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

μ̂(c1)
μ̂(c2)
μ̂(c3)
μ̂(c4)
μ̂(c5)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b1
b2
b3
b4
b5

⎤
⎥⎥⎥⎥⎦ (43)

where
b1

d f= lg
(
m1,2m1,3m1,4m1,5m1,6μ(c6)m1,7μ(c7)m1,8μ(c8)

)
b2

d f= lg
(
m2,1m2,3m2,4m2,5m2,6μ(c6)m2,7μ(c7)m2,8μ(c8)

)
b3

d f= lg
(
m3,1m3,2m3,4m3,5m3,6μ(c6)m3,7μ(c7)m3,8μ(c8)

)
b4

d f= lg
(
m4,1m4,2m4,3m4,5m4,6μ(c6)m4,7μ(c7)m4,8μ(c8)

)
b5

d f= lg
(
m5,1m5,2m5,3m5,4m5,6μ(c6)m5,7μ(c7)m5,8μ(c8)

)
(44)
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hence, (43) numerically:⎡
⎢⎢⎢⎢⎣

7 −1 −1 −1 −1
−1 7 −1 −1 −1
−1 −1 7 −1 −1
−1 −1 −1 7 −1
−1 −1 −1 −1 7

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

μ̂(c1)
μ̂(c2)
μ̂(c3)
μ̂(c4)
μ̂(c5)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

19.137
20.037
19.234
20.117
21.285

⎤
⎥⎥⎥⎥⎦ (45)

The intermediate result vector is:

μ̂ = [6.551, 6.664, 6.563, 6.674, 6.82]T (46)

Hence, following the ruleμ(ci ) = ξ μ̂(ci ), where ξ = 10 is the logarithm base, the final result
vector is calculated.

μ =

⎡
⎢⎢⎢⎢⎣

3, 556, 858
4, 608, 487
3, 657, 533
4, 716, 180
6, 601, 181

⎤
⎥⎥⎥⎥⎦ (47)

The rescaled full priority vector is μn = [0.0934, 0.121, 0.096, 0.124, 0.173, 0.144,

0.118, 0.13]T . Thus, according to the expert judgments and the market research TV show
number 5 (denoted as c5) has the chance to gather nearly 6.5 million people in front of
their TVs, whilst the second one in line can gather “only” 4.6 million people. Based on
this estimate, the board of directors representing the broadcaster decides to recommend
purchasing the license for the fifth presented TV show. Similarly as before S (M) = 0.002
is much smaller than 0.1. Thus, the matrix M seems to be consistent enough to recognize the
result obtained as relevant.

The eigenvalue based and geometric mean ranks calculated for M (solely) are μev ≈
μgm = [0.0933, 0.121, 0.0959, 0.124, 0.173, 0.144, 0.113, 0.136]T . The HRE additive
method for the pair M and CK returns μHREa = [0.093, 0.122, 0.096, 0.124, 0.173,
0.144, 0.117, 0.129]T . Solving the logarithmic least square optimization problem (5)
using the Nelder-Mead method [21] with the additional constraints μ(c6)/μ(c7) = 1.222,
μ(c6)/μ(c7) = 1.111, μ(c7)/μ(c8) = 0.909, and μ(c1) > 0, . . . , μ(c8) > 0, leads to
the following priority vector: μnm = [0.0934, 0.121, 0.096, 0.123, 0.173, 0.144, 0.118,
0.13]T . Similarly as before, all the vectors preserve the same rank order, which is c5, c6, c8,
c4, c2, c7 and c1. Similarly as before the vectors μn and μnm are almost identical.

5 Summary

The presented geometric HRE approach is another solution to the problem of rankings with
the reference set. It proposes to use a geometric mean instead of the arithmetic one used
in [16,17]. The advantage of this approach is the robustness of the procedure. As it was
shown in (Sect. 3.2) the proposed solution works for an arbitrary set of input data producing
an admissible vector of weights. The resulted ranking very often turns out to be optimal in
the sense of the magnitude of multiplicative errors. According to the formulated and proven
condition (Sect. 3.3), this happenswhen the differences between the resulting priorities are not
too large. Therefore, the geometric HRE approach is also a method of solving the logarithmic
least square constrained optimization problem.

The HRE approachmay be useful in many different situations, including ranking creation,
valuation of goods and services, risk assessment and others. Due to the lack of restrictions
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on the input PC matrix (there is a guarantee that a method with the geometric mean always
produces an admissible result), the scope of the applicability of the HRE method increases.
Thus, the presented method covers cases (e.g. rankings with non-reciprocal PC matrices)
which can not always be dealt with using the arithmetic mean heuristics. The HRE method
may also be useful for the AHP users. In this context, for the non-empty reference set CK ,
it may serve as an alternative for the standard priority deriving methods such as eigenvalue
based method [25] or geometric mean method [6].

Despite these encouraging results, much remains to be done. In particular, the role of the
inconsistency in the input matrixM should bemore deeply investigated. Also the existence of
solution for the “additive” HRE approach needs to be better researched. Of course, the more
examples are studied the better. Thus, further development of the method will be particularly
focused on the study and analysis of examples of its use.
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