Skip to main content
Log in

Numerical Design of Megawatt Gyrotron with 120 GHz Frequency and 50% Efficiency for Plasma Fusion Application

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The design of 120 GHz, 1 MW gyrotron for plasma fusion application is presented in this paper. The mode selection is carried out considering the aim of minimum mode competition, minimum cavity wall heating, etc. On the basis of the selected operating mode, the interaction cavity design and beam-wave interaction computation are carried out by using the PIC code. The design of triode type Magnetron Injection Gun (MIG) is also presented. Trajectory code EGUN, synthesis code MIGSYN and data analysis code MIGANS are used in the MIG designing. Further, the design of MIG is also validated by using the another trajectory code TRAK. The design results of beam dumping system (collector) and RF window are also presented. Depressed collector is designed to enhance the overall tube efficiency. The design study confirms >1 MW output power with tube efficiency around 50% (with collector efficiency).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V.A. Flyagin, A.V. Gaponov, I. Petelin, V.K. Yulpatov, The gyrotron. IEEE Trans. Microw. Theory Tech. 25, 514–521 (1977)

    Article  ADS  Google Scholar 

  2. M. Thumm, State-of-the-art of High Power Gyro-devices and Free Electron Masers Update 2010. KIT Scientific Report 7575, KIT Scientific Publication 2011, Karlsruhe, Germany

  3. N. Kumar, U. Singh, T.P. Singh, A.K. Sinha, A review on the applications of high power, high frequency microwave source—gyrotron. J. Fusion Energ. 30, 257–276 (2011)

    Article  Google Scholar 

  4. A.V. Gaponov-Grekhov, V.L. Granatstein, Application of High Power Microwaves (Artech House Publication, London, 1994)

    Google Scholar 

  5. M. Thumm, High power gyro-devices for plasma heating and other applications. Int. J. Infrared Millim. Waves 26, 483–503 (2005)

    Article  ADS  Google Scholar 

  6. N. Kumar, U. Singh, A. Kumar, H. Khatun, T.P. Singh, A.K. Sinha, Design of 35 GHz gyrotron for material processing applications. Prog. Electromagn. Res. B (PIER B) 27, 273–288 (2011)

    Google Scholar 

  7. N. Kumar, U. Singh, A. Kumar, A.K. Sinha, Design and misalignment analysis of 140 GHz, 1.5 MW gyrotron interaction cavity for plasma heating applications. J. Fusion Energ. 30, 169–175 (2011)

    Article  Google Scholar 

  8. N. Kumar, U. Singh, A. Kumar, H. Khatun, A.K. Sinha, Numerical design of 120 GHz, 1 MW gyrotron interaction cavity. Infrared Phys. Technol. 54, 512–516 (2011)

    Article  ADS  Google Scholar 

  9. D.S. Tax, E.M. Choi, I. Mastovsky, J.M. Neilson, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, A.C. Torrezan, Experimental results on a 1.5 MW, 110 GHz gyrotron with a smooth mirror mode converter. J. Infrared Milli Terahz Waves 32, 358–370 (2011)

    Article  Google Scholar 

  10. G. Dammertz, O. Braz, A.K. Chopra, K. Koppenburg, M. Kuntze, B. Piosczyk, M. Thumm, Recent results of the 1-MW, 140-GHz, TE22,6-mode gyrotron. IEEE Tr. Plasma Sci. 27, 330–339 (1999)

    Article  ADS  Google Scholar 

  11. S. Albertia et al., European high-power CW gyrotron development for ECRH systems. Fusion Eng. Des. 53, 387–397 (2001)

    Article  Google Scholar 

  12. N.A. Zavol’sky, V.E. Zapevalov, M.A. Moiseev, L.L. Nemirovskaya, Possibilities for optimizing the cavity of a high-power continuous-wave gyrotron. Radiophys. Quantum Electron. 47, 603–614 (2004)

    Article  ADS  Google Scholar 

  13. M.V. Kartikeyan, E. Borie, M. Thumm, Gyrotrons High-Power Microwave and Millimeter Wave Technology (Springer, Germany, 2004)

    Google Scholar 

  14. A.T. Drobot, K. Kim, Space charge effects on the equilibrium of guided electron flow with gyromotion. Int. J. Electron. 51, 351–367 (1981)

    Article  Google Scholar 

  15. R.A. Correa, A.B. Levush, T.M. Antonsen, High efficiency cavity design of a 170 GHz gyrotron for fusion applications. Phys. Plasmas 4, 209–216 (1997)

    Article  ADS  Google Scholar 

  16. E. Borie, B. Jodicke, Comments on the linear theory of the gyrotron. IEEE Trans. Plasma Sci. 16, 116–121 (1988)

    Article  ADS  Google Scholar 

  17. N. Kumar, U. Singh, T.P. Singh, A.K. Sinha, Design of 95 GHz, 2 MW gyrotron for communication and security applications. Int. J. of Infrared, Millim. Wave Terahertz Wave 32, 186–195 (2011)

    Article  Google Scholar 

  18. N. Kumar, U. Singh, A. Kumar, H. Khatun, A.K. Sinha, On the design of high efficiency double beam gyrotron. IEEE Tr. Plasma Sci. 39, 1781–1785 (2011)

    Article  ADS  Google Scholar 

  19. H. Wu, R.L. Liou, A.H. McCurdy, PIC code simulation of pulsed radiation in a tapered closed cavity gyrotron. IEEE Tr. Plasma Sci. 24, 606–612 (1996)

    Article  ADS  Google Scholar 

  20. MAGIC User Mannual, Version of Magic 3D (ATK Mission Research, Washington, 2007)

    Google Scholar 

  21. B.G. Danly, R.J. Temkin, Generalized nonlinear harmonic gyrotron theory. Phys. Fluids 29, 561–567 (1986)

    Article  ADS  Google Scholar 

  22. N.S. Ginzburg, G.S. Nusinovich, On the nonlinear theory of a relativistic gyrotron. Izv. Vuzov. Radiofizika. 22, 754–763 (1979)

    ADS  Google Scholar 

  23. A.K. Ganguli, K.R. Chu, Limiting current in gyrotrons. Int. J. Infrared Millim. Waves 5, 103–121 (1984)

    Article  ADS  Google Scholar 

  24. J.M. Baird, W. Lawson, Magnetron injection gun (MIG) design for gyrotron applications. Int. J. Electron. 61, 953–967 (1986)

    Article  Google Scholar 

  25. W. Lawson, MIG scaling. IEEE Trans. Plasma Sci. 16, 290–295 (1988)

    Article  ADS  Google Scholar 

  26. U. Singh, A. Bera, R.R. Rao, A.K. Sinha, Synthesized parameters of MIG for 200 kW, 42 GHz gyrotron. J. Infrared Millim. Terahertz Waves 31, 533–541 (2009)

    Google Scholar 

  27. EGUN, Hermannsfeldt, W.B., Stanford Linear Accelerator Center, Stanford University Report SLAC-226 (1979)

  28. A. Bera, U. Singh, R.R. Rao, A.K. Sinha, Design of MIG for 42 GHz, 200 kW Gyrotron (IEEE-IVEC, Monterey, 2008)

  29. U. Singh, A. Bera, N. Kumar, A.K. Sinha, Numerical simulation of MIG for 200 kW, 42 GHz gyrotron. Int. J. Infrared Millim. Waves 31, 708–713 (2010)

    Google Scholar 

  30. U. Singh, N. Kumar, N. Kumar, S. Tandon, H. Khatun, L.P. Purohit, A.K. Sinha, Numerical simulation of MIG for 120 GHz, 1 MW gyrotron. Prog. Electromagn. Res. Lett. 16, 21–34 (2010)

    Article  Google Scholar 

  31. A. Kumar, U.K. Goswami, S. Poonia, U. Singh, N. Kumar, M.K. Alaria, A. Bera, H. Khatun, A.K. Sinha, Integrated design of undepressed collector for low power gyrotron. J. Infrared Milli Terahz Waves 32, 733–741 (2011)

    Article  Google Scholar 

  32. M.E. Read, W.G. Lawson, A.J. Dudas, A. Singh, Depressed collectors for high-power gyrotrons. IEEE Tr. Electron. Devices 37, 1579–1589 (1990)

    Article  ADS  Google Scholar 

  33. B. Piosczyk, C.T. Iatrou, G. Dammertz, M. Thumm, Single-stage depressed collectors for gyrotrons. IEEE Tr. Plasma Sci. 24, 579–585 (1996)

    Article  ADS  Google Scholar 

  34. G.S. Nusinovich, Introduction to the Physics of Gyrotron (Johns Hopkins Univ. Press, Baltimore, 2004)

    Google Scholar 

  35. M. Thumm, Development of output power window for high power long pulse gyrotrons and EC wave applications. Int. J. Infrared Milli. Waves 19, 3–14 (1998)

    Article  Google Scholar 

  36. R. Heidinger, G. Dammertz, A. Meier, M. Thumm, CVD diamond windows studied with low and high power millimeter waves. IEEE Trans. Plasma Sci. 30, 800–807 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are pleased to acknowledge the support of Dr. Chandra Shekhar, Director, CEERI Pilani and Dr. SN Joshi, National Coordinator of Gyrotron project. The authors also wish to thank to the team members of gyrotron for helpful discussions. Thanks are also due to CSIR for funding this project and awarding the Senior Research Fellowship (SRF) to the corresponding author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, N., Singh, U., Kumar, A. et al. Numerical Design of Megawatt Gyrotron with 120 GHz Frequency and 50% Efficiency for Plasma Fusion Application. J Fusion Energ 32, 20–27 (2013). https://doi.org/10.1007/s10894-012-9516-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9516-6

Keywords

Navigation