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Abstract We investigate the group irregularity strength (sg(G)) of graphs, that is,
we find the minimum value of s such that for any Abelian group G of order s, there
exists a function f : E(G) → G such that the sums of edge labels at every vertex
are distinct. We prove that for any connected graph G of order at least 3, sg(G) = n
if n �= 4k + 2 and sg(G) ≤ n + 1 otherwise, except the case of an infinite family of
stars. We also prove that the presented labelling algorithm is linear with respect to the
order of the graph.

Keywords Irregularity strength · Graph labelling · Abelian group

Mathematics Subject Classification (2000) 05C15 · 05C78

M. Anholcer (B)
Faculty of Informatics and Electronic Economy, Poznań University of Economics,
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1 Introduction

It is a known fact that in any simple graph G there are at least two vertices of the
same degree. The situation changes if we consider multigraphs. Each multiple edge
may be represented with some integer label and the (weighted) degree of any vertex
x is then calculated as the sum of labels over all edges incident to x . The maximum
label s is called the strength of the labelling. The labelling itself is called irregu-
lar if the weighted degrees of all the vertices are distinct. The smallest value of s
that allows some irregular labelling is called irregularity strength of G and denoted
by s(G).

The problem of finding s(G)was introduced by Chartrand et al. (1988) and investi-
gated by numerous authors. The best published result, due to Kalkowski et al. (2011),
is s(G) ≤ 6n/δ. There are some signals that it was recently improved byMajerski and
Przybyło (2013) for dense graphs of sufficiently big order (s(G) ≤ (4+ o(1))n/δ + 4
in this case). The exact value of s(T ) for a tree T was investigated e.g. by Aigner and
Triesch (1990), Amar and Togni (1998), Ferrara et al. (2010) and Togni (1998).

On the other hand, numerous authors studied various labelling problems when
elements of finite Abelian groups were used instead of integers to label either vertices
or edges of graph.We give only few examples here. Graham and Sloane (1980) studied
harmonious graphs, i.e., graphs for which there exists an injection f : V (G) →
Zq that assigns to every edge (x, y) ∈ E(G) unique sum f (x) + f (y) modulo q.
Beals et al. (1991) considered the concept of harmoniousness with respect to arbitrary
Abelian groups. Żak (2009) generalized the problem and introduced new parameter,
harmonious order of G, the smallest number t such that injection f : V (G) → Zt

(or surjection if t < V (G)) produces distinct edge sums. Hovey (1991) considers the
so-called A − cordial labellings, where for a given Abelian group A and a graph G
one wants to obtain a vertex labelling such that the classes of vertices labelled with one
label are (almost) equinumerous and so are the classes of edges with the same sums.
Cavenagh et al. (2006) consider edge-magic total labellingswith finiteAbelian groups,
i.e., the labelings of vertices and edges resulting in equal edge sums. Froncek (2013)
defined the notion of group distance magic graphs, i.e., graphs allowing the bijective
labelling of vertices with elements of an Abelian group resulting in constant sums of
neighbour labels. Stanley (1973) studied vertex-magic labellings of edges with the
elements of an Abelian group A, i.e., labellings where the resulting weighted degrees
are constant. Kaplan et al. (2009) considered vertex-antimagic edge labellings, i.e.,
bijections f : E(G) → A, where A is a cyclic group, resulting in distinct weighted
degrees of vertices.

The problems considered in the paper fit within the framework of the research
conducted thus far on both irregular labellings and labellings from Abelian groups.
Assume we are given an arbitrary graph G of order n with no components isomorphic
to K1 or K2. Assume G is an Abelian group of order m ≥ n with the operation
denoted by + and identity element 0. For convenience we will write ka to denote
a + a + · · · + a (where element a appears k times), −a to denote the inverse of a and
we will use a − b instead of a + (−b). Moreover, the notation

∑
a∈S a will be used as

a short form for a1 + a2 + a3 + . . . , where a1, a2, a3, . . . are all the elements of the
set S.
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Given an edge labelling f : E(G) → G, we define the weighted degree of a vertex
v to be

w(v) =
∑

e�v

f (e).

We call f G-irregular if all the weighted degrees are distinct. The group irregularity
strength of G, denoted sg(G), is the minimum integer value s such that for every
Abelian group G of order s there exists a G-irregular labelling f of G. The main
result of our paper is the following theorem, determining the value of sg(G) for every
connected graph G of order n ≥ 3.

Theorem 1 Let G be arbitrary connected graph of order n ≥ 3. Then

sg(G) =

⎧
⎪⎨

⎪⎩

n + 2 when G ∼= K1,32q+1−2 f or some integer q ≥ 1

n + 1 when n ≡ 2(mod 4) ∧ G �∼= K1,32q+1−2 f or any integer q ≥ 1

n otherwise

We also show that the following theorem is true.

Theorem 2 Let G be arbitrary connected graph of order n ≥ 3. Then, for every
k > sg(G) and every finite Abelian group G of order k, G admits a G-irregular
labelling, except for the cases when:

– G ∼= K1,n−1 and G ∼= Z3×Z3×· · ·×Z3 = (Z3)
q for some q such that 3q = n+1

– G ∼= Z2 × Z2 × . . . × Z2 = (Z2)
q for some q such that 2q = n + 2.

2 Proof of Theorem 1

In order to distinguish n vertices in the graph we need at least n distinct elements of
G. However, n elements are not always enough, as shows the following lemma.

Lemma 1 Let G be of order n, if n ≡ 2(mod4), then sg(G) ≥ n + 1.

Proof We prove the Lemma by contradiction. Let G be an Abelian group of order
n = 2(1 + 2k). The fundamental theorem of finite Abelian groups states that the
finite Abelian group G can be expressed as the direct sum of cyclic subgroups of
prime-power order. This implies that G ∼= Z2 × Zp

α1
1

× Zp
α2
2

× . . . × Zpαm
m
, where

n = 2
∏m

i=1 p
αi
i and pi > 2 for i = 1, . . . ,m are not necessarily distinct primes.

This implies that one can write a ∈ G as a = (a0, a1, . . . , am). Notice that in the
group G we have 1 + 2k elements with the first coordinate 0 and 1 + 2k with the
first coordinate 1. Let now w(G) = ∑

v∈V (G) w(v) = ∑
a∈G a. Observe that w(G)

is a vector with the first coordinate 1 (since we are summing in Z2). On the other
hand w(G) = ∑

v∈V (G)(
∑

ev f (e)), so each label f (e) for any e ∈ E(G) appears in
the sum twice. Therefore w(G) is a vector with the first coordinate 0 (since we are
summing in Z2), a contradiction. ��

We continue with the following lemma, determining the group irregularity strength
of stars.
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Lemma 2 Let K1,n−1 be a star with n − 1 pendant vertices and n ≥ 3. Then

sg(K1,n−1)=

⎧
⎪⎨

⎪⎩

n+2 when n ≡ 2 (mod4) ∧ n = 3q − 1 f or some integer q ≥ 1

n+1 when n ≡ 2 (mod4) ∧ n �= 3q − 1 f or any integer q ≥ 1

n otherwise.

Proof Case 1: n is odd.
We put all the elements of G other than 0 on the pendant edges and obtain this way

distinct weighted degrees (same as edge labels) on the leafs and weighted degree 0 in
the central vertex.

Case 2: n = 4k for some k ≥ 1.
We distinguish two cases, depending on the number of involutions.
If there is only one involution, then it is guaranteed that there exists a subgroup of G

isomorphic with Z4: {0, a, 2a, 3a} (2a is the only involution here). In such a situation
we label the edges with all the elements of G except 3a, assigning this way the same
values to the weighted degrees of all the pendant vertices. It is straightforward to check
that the weighted degree of central vertex is 3a.

If there are at least two involutions, then the sum of all the elements of G is 0 (see
e.g. Combe et al. 2004, Lemma 8). We put on the edges all the elements of G but 0 and
thus obtain distinct weighted degrees of pendant vertices not equal to 0 and weighted
degree 0 of the central vertex.

Case 3: n = 4k + 2 for some natural k ≥ 1.
In this case the order of G must be at least 4k + 3 by Lemma 1. If |G| = 4k + 3,

then there is no involution in G. We distinguish two cases, depending on the orders of
the elements of G.

If there is an element a inG of ordermore than 3, thenwe assign to three edges labels
a, −2a and 0 and we put 2k − 1 pairs {a j ,−a j }, where a j �∈ {0, a,−a, 2a,−2a}, on
the remaining edges, obtaining this way the G-irregular labelling.

If all the elements of G have order 3, then n = 3q −1. Let G ∼= Z3 ×Z3 ×· · ·×Z3.
Assume we are able to label K1,n−1 with n + 1 labels from G. In such a situation we
would have to use n − 1 distinct elements of G on the edges, which would leave us
two distinct elements, say a1 and a2. The weighted degree of the central vertex would
be −(a1 + a2). This number should be distinct from all other degrees, so one of the
equalities −(a1 + a2) = a1 or −(a1 + a2) = a2 should be satisfied. In both cases it
follows that a1 = a2, contradiction.

Thus we have to use a group G of order at least n + 2 = 4k + 4 in order to obtain a
G-irregular labelling. Observe that n+2 can not be equal to 2p for any natural number
p (this follows from the Mihǎilescu Theorem, also known as the Catalan Conjecture,
see Mihǎilescu 2004). Thus in any group of order n+2 there are two distinct elements
a1 and a2 such that a1 + a2 = 0.

If there is more than one involution in G, then we label the edges with all the
elements of G but 0, a1 and a2 and obtain this way the sum 0 at the central vertex,
distinct from all the other weighted degrees.

If there is exactly one involution i in G, then G has a subgroup G1 isomorphic with
Z4: G1 = {0, a, 2a = i, 3a}. Thus we can put 0, a and 2a on three of the edges of
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the star. The remaining 4k elements of G form 2k distinct pairs {a j ,−a j } such that
a j �∈ G1, so we can put 2k − 1 of them on the remaining edges. Finally the central
vertex obtains the weight 3a and all the vertex weights are distinct. ��

Now we are going to determine the value of sg(K1,n−1) for arbitrary tree T not
being a star.

Lemma 3 Let T be arbitrary tree on n ≥ 3 vertices not being a star. Then

sg(T ) =
{
n + 1 when n ≡ 2 (mod 4)

n otherwise.

Proof Assume we properly colored the vertices of T with two colors, obtaining color
classes V1 and V2. Given any two vertices x1 and x2, there exists unique path P(x1, x2)
that joins them. If x1 and x2 belong to the same color class, then the path consists of
odd number of vertices and even number of edges (we will call such a path odd path).
If x1 and x2 belong to distinct color classes, then the path consists of even number of
vertices and odd number of edges (we will call such a path even path).

We start with 0 on all the edges of T . Then, in every step, we will add some labels
to all the edges of chosen path P(x1, x2). To be more specific, we will add some label
a to all the edges having odd position on the path (starting from x1) and −a to all the
edges having even position.Wewill denote such amodification in the edge labelling by
φ(x1, x2) = a. Observe that if P(x1, x2) is odd, then putting φ(x1, x2) = a increases
the weighted degree of x1 by a and the weighted degree of x2 by −a. If P(x1, x2) is
even, then the weighted degrees of x1 and x2 increase by a. In both cases the weighted
degrees of the remaining vertices stay unchanged.

We are going to consider three cases.
Case 1: n = 2k + 1 for some integer k ≥ 1.
Let G be an arbitrary Abelian group of order n. As G does not have any elements

of order 2, we can choose k elements a1, a2, . . . , ak ∈ G such that ai �∈ {a j ,−a j }
for i �= j and ai �= 0 for 1 ≤ i ≤ k. One of the color classes of V (T ), say V1,
has odd number of vertices and V2 even. We join the vertices of V2 in pairs, then do
the same with all the vertices in V1 but one, say x0. We obtained this way exactly k
monochromatic pairs (x j,1, x j,2). Nowwe put φ(x j,1, x j,2) = a j , for 1 ≤ j ≤ k. This
way we obtain the G-irregular weighting: w(x0) = 0, w(x j,1) = a j for 1 ≤ j ≤ k,
w(x j,2) = −a j for 1 ≤ j ≤ k.

Case 2: n = 4k for some integer k ≥ 1.
We distinguish two subcases, depending on the number of involutions in G.
Case 2.1: There is only one involution in G.
If there is only one involution in G, then there exists a subgroup {0, a, 2a, 3a} of

G, where 2a is the only element of order 2 in G. In such a case we choose two vertices
x1, x2 from one of the color classes and one vertex x0 from the other one. We put
φ(x0, x1) = a and φ(x0, x2) = 2a, obtaining this way w(x1) = a, w(x2) = 2a
and w(x0) = 3a. The number of the remaining vertices in one of the color classes is
now odd and in the second one even. Thus we can proceed as in the case of n odd,
using the remaining labels {a j ,−a j } such that a j �∈ {a, 2a, 3a} and obtaining this
way G-irregular labelling of T .
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Case 2.2: The number of involutions r > 1.
If there are more involutions a1, a2, . . . , ar , then their number r is odd and their

sum equals 0 (see e.g. Combe et al. (2004), Lemma 8).
If r ≤ n/2, then we choose one vertex x0 from the color class with less vertices

(say Vp) and r vertices x1, x2, . . . , xr from V3−p and we put φ(x0, x j ) = a j for
j = 1, . . . , r . This way we obtain w(x0) = 0 and w(x j ) = a j for j = 1, . . . , r . If
the numbers of the remaining vertices in V1 and V2 are both even, we continue like
in the case of n odd (this time we do not obtain w(x) = 0 for any new vertex). If
both numbers are odd, we choose one vertex xr+1 from Vp and any element ar+1 �∈
{0, a1, . . . , ar }. By putting φ(x0, xr+1) = ar+1 we obtain finally w(x0) = ar+1 and
w(xr+1) = −ar+1. Now the number of remaining vertices in Vp is even and in V3−p

odd. Since w(v) �= 0 for any previously considered vertex v, we can proceed as in the
case of n odd.

If r > n/2, thenG ∼= Z2×Z2×· · ·×Z2 and all the elements ofG but 0 have order 2.
In such case we chose any vertex x0 of T and put φ(x0, x j ) = a j for j = 1, . . . , n−1
for distinct elements a j �= 0. Thiswaywe obtainw(x j ) = a j �= 0 for j = 1, . . . , n−1
and w(x0) = 0.

Case 3: n = 4k + 2 for some integer k ≥ 1.
If n = 4k + 2, then we will use a group of order n + 1. We have to distinguish two

cases.
If both color classes of T are even, then we proceed as in the case when n is odd

(the difference is that there is no vertex x0 with w(x0) = 0).
Suppose that both color classes are odd. We will reduce their sizes in such a way

that they both become even.
If there is an element of G of order greater than 3, say a, then we select three

arbitrary vertices x1, x2, x3 from one color class and any vertex x0 from the other one
and we put φ(x1, x0) = a, φ(x2, x0) = −2a, φ(x3, x0) = 0. This way we obtain the
following weighted degrees: w(x0) = −a, w(x1) = a, w(x2) = −2a, w(x3) = 0. As
we can easily see, these degrees are distinct and we still have k − 2 pairs of elements
{a j ,−a j } to label the remaining vertices as in the previous cases, as no element in the
pairs {a j ,−a j } belongs to the set {−2a,−a, 0, a, 2a}.

If all the elements of G have order 3, then n ≥ 26 (in fact, we need only n ≥ 10).We
choose a, b, c ∈ G such that a �= 0, b �= 0, c �= 0, a �∈ {b,−b}, c �∈ {a,−a, b,−b, a+
b,−(a + b), a − b, b − a}. As T is not star and both color classes are odd, each of
them contains at least 3 vertices. Thus we can choose five vertices x1, x2, x3, x4, x5
from one color class and three y1, y2, y3 from another one. Nowwe put φ(x1, y1) = a,
φ(x2, y1) = a, φ(x2, y2) = 2a + b, φ(x3, y2) = a + b, φ(x3, y3) = 2a + 2b + c,
φ(x4, y3) = a+b+c, φ(x5, y3) = 0. This way we obtain 8 distinct weighted degrees
w(x1) = a, w(x2) = b, w(x3) = c, w(x4) = a + b + c �∈ {0, a, b, c,−a,−b,−c},
w(x5) = 0, w(y1) = −a, w(y2) = −b, w(y3) = −c and we still have 2k − 3
pairs {a j ,−a j } to distinguish remaining even numbers of vertices in both color
classes. ��

Theorem 1 follows easily from the above lemmas. IfG is a star, then we use Lemma
2. Otherwise we choose any spanning tree of G not being a star, and use Lemmas 3
and 1, labelling all the remaining edges with 0.
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3 Proof of Theorem 2

Before we prove Theorem 2, we need the following technical lemma that was proved
in Anholcer and Cichacz (2013).

Lemma 4 [(Anholcer and Cichacz 2013)] Let G be an Abelian group with involutions
set I � = {i1, . . . , i2k−1}, k ≥ 2 and let I = I � ∪ {0}. Then for any given r such that
0 ≤ r ≤ 2k , there exists set R ⊆ I , |R| = r , such that

∑

i∈R

i = 0

if and only if r �∈ {2, 2k − 2}.
In the next step we are going to show the construction of desired labelling for stars.

Lemma 5 Let K1,n−1 be a star with n − 1 pendant vertices and n ≥ 3. Then K1,n−1
admits G-irregular labelling for any finite Abelian group G of order k > sg(K1,n−1)

except the cases whenG ∼= Z3×Z3×· · ·×Z3 = (Z3)
q for some q such that 3q = n+1

and G ∼= Z2 × Z2 × . . . × Z2 = (Z2)
q for some q such that 2q = n + 2.

Proof We can write k = 2p(2m+1) for some natural numbers p andm. We are going
to distinguish two cases, depending on the number of the involutions in G.

Case 1: There exists at most one involution i ∈ G.
If n is odd then we put n−1

2 pairs {a j ,−a j } (a j �= 0) on the pendant edges and
obtain this way distinct weighted degrees (same as edge labels) on the leafs and the
weighted degree 0 in the central vertex.

If n is even and there is an element a ∈ G of order more than 3, then we
assign to three edges labels a, −2a and 0 and we put n−4

2 pairs {a j ,−a j }, where
a j �∈ {0, a,−a, 2a,−2a}, on the remaining edges, obtaining this way the G-irregular
labelling of G (such number of pairs exist, as k > n).

If n is even and all the elements of G have order less than 4 and there exists the
involution i ∈ G then k ≥ n + 2 (as k is even) and we assign to three edges labels a,
i and 0 and we put n−4

2 pairs {a j ,−a j }, where a j �∈ {0, a,−a, i, a + i,−a + i}, on
the remaining edges, obtaining this way the G-irregular labelling.

Finally, if all the elements of G have order 3, then k = 3r for some r and G ∼=
Z3 × Z3 × · · · × Z3.

If now n + 1 = k, then sg(G) = n (recall that k > sg(G)) and n ≡ 0(mod 4)
by Theorem 1. Assume that we are able to label K1,n−1 with n + 1 labels from G.
In such a situation we would have to use n − 1 distinct elements of G on the edges,
which would leave us two distinct elements, say a1 and a2. The weighted degree of
the central vertex would be −(a1 + a2). This number should be distinct from all other
degrees, so one of the equalities −(a1 + a2) = a1 or −(a1 + a2) = a2 should be
satisfied. In both cases it follows that a1 = a2, contradiction.

Thus we have to use the group G of order at least n+2 in order to obtain G-irregular
labelling. Observe that n + 2 can not be equal to 2p for any natural number p (this
follows from the Mihǎilescu Theorem, also known as the Catalan Conjecture, see
Mihǎilescu 2004). Thus in any group of order n + 2 there are two distinct elements
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a1 and a2 such that a1 + a2 = 0. We label the edges with all the elements of G but
0, a1 and a2 and obtain this way the sum 0 at the central vertex, distinct from all
the other weighted degrees. Thus we can assume that n + 3 ≤ k and we assign to
three edges labels a, b �= 2a and 2a + 2b and we put n−4

2 pairs {a j ,−a j }, where
a j �∈ {0, a, 2a, b, 2b, a + b, 2a + 2b}, on the remaining edges, obtaining this way the
G-irregular labelling.

Case 2: There exist t > 1 involutions i1, . . . , it in G.
Recall that t = 2q − 1 for some 1 < q ≤ p and

∑t
j=1 it = 0 (see e.g. Combe et

al. 2004, Lemma 8). Let I � denote the set of all the involutions and let I = I � ∪ {0}.
We will consider three subcases, depending on the relation between n and t .

Case 2.1: t ≤ n.
If n is even, then we put i j , where j = 1, . . . , t , on t edges and (n − t − 1)/2

distinct pairs {xl ,−xl} on the remaining edges.
If n is odd, then we put i j , where j = 1, . . . , t − 1 on t − 1 edges and (n − t)/2

distinct pairs {xl ,−xl} on the remaining edges. This way the leafs obtain distinct
weighted degrees same as edge labels and the central degree obtains weighted degree
either 0 (when n is even) or it (when n is odd).

Case 2.2: t = n + 1.
Obviously n is even.
If there exists an element a ∈ G such that 2a �= 0, thenwe assign to two edges labels

a,−a. Using Lemma 4, we can choose n−2 = 2q −4 elements i j1 , i j2 , . . . , i jn−2 ∈ I ,
such that

n−2∑

l=1

i jl = 0.

We put the elements i j1 , i j2 , . . . , i jn−3 on the remaining edges, obtaining this way
the G-irregular labelling.

If there is no element a ∈ G such that 2a �= 0, then G ∼= Z2 × Z2 × . . . × Z2 and
k = 2p = n + 2. Let us assume that we managed to distinguish all the vertices and
we did not use labels a, b ∈ G (a �= b). Thus

∑
v∈V (G) w(v) = ∑

g∈G g − a − b =
−a − b �= 0. On the other hand each label f (e) for any e ∈ E(G) appears in the sum
twice. Therefore

∑
v∈V (G) w(v) = 0. The contradiction shows that it is impossible to

find desired labelling if G ∼= Z2 × Z2 × . . . × Z2 and 2p = n + 2.
Case 2.3: t ≥ n + 2.
We have that 2 < n < 2p − 2, thus using Lemma 4 we can choose n elements

i j1, i j2 , . . . , i jn ∈ I such that n∑

l=1

i jl = 0.

We put the elements i j1, i j2 , . . . , i jn−1 on the edges obtaining this way distinct
weighted degrees (same as edge labels) for the leafs and the weighted degree in for
the central vertex. ��
Lemma 6 Let T be arbitrary tree on n ≥ 4 vertices not being a star. Then T admits
G-irregular labelling for any abelian group G of order k > sg(T ) except the case
when G ∼= Z2 × Z2 × . . . × Z2 = (Z2)

q for some q such that 2q = n + 2.
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Proof Wecanwrite k = 2p(2m+1) for somenatural numbers p andm.Wedistinguish
three cases depending on the number of the involutions in G and the parity of the color
classes of T .

Case 1: There exists at most one involution i ∈ G and at least one of the color
classes is even.

Sincewehave at least � n
2 �pairs {ai ,−ai } such that 2ai �= 0,we combine the vertices

of V1 into pairs (except possibly one vertex if |V1| is odd), then do the same with all
the vertices in V2. We obtain this way exactly � n

2 � monochromatic pairs (x j,1, x j,2)
plus possibly one additional vertex, say x0. Now we put φ(x j,1, x j,2) = a j , for 1 ≤
j ≤ � n

2 �. This way we obtain a G-irregular weighting, as w(x j,1) = a j = −w(x j,2)
for 1 ≤ j ≤ k and if n is odd, then w(x0) = 0 (this follows from the fact that we
begin with all the edges labelled 0).

Case 2: There exists at most one involution i ∈ G and at both color classes are odd.
We distinguish three cases related to the structure of G.
Case 2.1: There is an element a ∈ G of order greater than 3 or there exists an

involution i ∈ G.
We select three arbitrary vertices x1, x2, x3 from one color class and any vertex x0

from the other one.
If there is an element a ∈ G of order greater than 3, then we put φ(x1, x0) = a,

φ(x2, x0) = −2a, φ(x3, x0) = 0. This waywe obtain the following weighted degrees:
w(x0) = −a, w(x1) = a, w(x2) = −2a, w(x3) = 0.

In there exists an involution i ∈ G, then we choose some a �∈ {0, i} and we put
φ(x1, x0) = i , φ(x2, x0) = a, φ(x3, x0) = 0. This way we obtain the following
weighted degrees: w(x0) = a + i , w(x1) = i , w(x2) = a, w(x3) = 0. Observe that
the existence of an involution implies that k ≥ n + 2.

As we can easily see, in both cases the weighted degrees are distinct and since n
is even and k ≥ n + 1 (k ≥ n + 2, respectively) we still have at least n−4

2 pairs of
elements {a j ,−a j } to label the remaining vertices as in the previous cases.

Case 2.2: All the elements of G have order 3 and k ≥ 10.
We choose a, b, c ∈ G such that a �= 0, b �= 0, c �= 0, a �∈ {b,−b}, c �∈

{a,−a, b,−b, a + b,−(a + b), a − b, b− a}. As T is not star and both color classes
are odd, we can choose at least three vertices from each color class. Now the labelling
depends on the value of n.

If n ≥ 8, then we can choose five vertices x1, x2, x3, x4, x5 from one color class
and three y1, y2, y3 from the other one. Now we put φ(x1, y1) = a, φ(x2, y1) = a,
φ(x2, y2) = 2a+b,φ(x3, y2) = a+b,φ(x3, y3) = 2a+2b+c,φ(x4, y3) = a+b+c,
φ(x5, y3) = 0. This way we obtain 8 distinct weighted degrees w(x1) = a,
w(x2) = b, w(x3) = c, w(x4) = a + b + c �∈ {0, a, b, c,−a,−b,−c}, w(x5) = 0,
w(y1) = −a, w(y2) = −b, w(y3) = −c and we still have k−9

2 ≥ � n−8
2 �

pairs {a j ,−a j } to distinguish remaining even numbers of vertices in both color
classes.

If n = 6, then obviously in both color classes there are exactly three vertices,
say x1, x2, x3 and y1, y2, y3, respectively. We put φ(x1, y1) = a, φ(x1, y2) = b,
φ(x2, y1) = a, φ(x2, y3) = c, φ(x3, y2) = b and φ(x3, y3) = c. This way we obtain
six distinct weighted degrees w(x1) = a + b, w(x2) = a + c, w(x3) = b + c,
w(y1) = −a, w(y2) = −b and w(y3) = −c.
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Case 2.3: G ∼= Z3 × Z3.
Again, the labelling depends on the value of n.
If n = 8, then since T is not star, we can choose five vertices x1, x2, x3, x4, x5 from

one color class and three y1, y2, y3 from another one. Now we put φ(x1, y1) = (1, 0),
φ(x2, y1) = (2, 0), φ(x2, y2) = (0, 0), φ(x3, y2) = (1, 1), φ(x3, y3) = (2, 1),
φ(x4, y3) = (2, 1),φ(x5, y3) = (2, 2). Thiswayweobtain 8 distinctweighted degrees
w(x1) = (1, 0), w(x2) = (2, 0), w(x3) = (0, 2), w(x4) = (2, 1), w(x5) = (2, 2),
w(y1) = (0, 0), w(y2) = (1, 1), w(y3) = (0, 1).

If n = 6, then there are exactly three vertices in both color classes, say x1, x2, x3 and
y1, y2, y3, respectively. We put φ(x1, y1) = (1, 1), φ(x1, y2) = (2, 0), φ(x2, y2) =
(1, 2), φ(x2, y3) = (1, 0) and φ(x3, y3) = (0, 0). This way we obtain six distinct
weighted degrees w(x1) = (0, 1), w(x2) = (2, 2), w(x3) = (0, 0), w(y1) = (1, 1),
w(y2) = (0, 2) and w(y3) = (1, 0).

Case 3: There exist t > 1 involutions in G.
Recall that t = 2q − 1 for some 1 < q ≤ p. We distinguish three cases, depending

on the relation between t and n.
Case 3.1: t ≤ n.
We choose t vertices x1, x2, . . . , xt ∈ V1 ∪ V2 in such a way, that at least one

of the numbers of remaining vertices in V1 and V2 is even. We put φ(x1, x j ) =
i j for j = 2, . . . , t obtaining w(x j ) = i j for j = 1, . . . , t . Since the numbers
of remaining vertices in at least one of the color classes V1 and V2 are even, we
construct � n−t

2 � monochromatic pairs and use the pairs {xl ,−xl} to label them. If
there is some unpaired vertex, then its weighted degree is 0, so the obtained labelling is
G-irregular.

Case 3.2: t = n + 1.
If there exists an element a ∈ G such that 2a �= 0, then we choose two vertices

xn−1, xn from one color class and we put φ(xn−1, xn) = a. Using Lemma 4 we can
choose t − 3 = n − 2 = 2q − 4 elements i j1, i j2 , . . . , i jn−2 ∈ I such that

n−2∑

l=1

i jl = 0.

We put φ(x1, xl) = i jl for l = 2, . . . , n − 2. This way we obtain w(xl) = i jl for
l = 1, . . . , n − 2.

If there is no element a ∈ G such that 2a �= 0, then G ∼= Z2 × Z2 × . . . × Z2 and
k = 2p = n + 2. As in the proof of Lemma 5 let us assume that we distinguished
all vertices and we did not use labels a, b ∈ G (a �= b). Thus

∑
v∈V (G) w(v) =∑

g∈G g− a − b = −a − b �= 0. On the other hand each label f (e) for any e ∈ E(G)

appears in the sum twice. Therefore
∑

v∈V (G) w(v) = 0. This contradiction shows
that it is impossible to find desired labelling in such a case.

Case 3.3: t ≥ n + 2.
We have 2 < n < 2q − 2, thus using Lemma 4 we can choose n elements

i j1, i j2 , . . . , i jn such that
n−1∑

l=1

i jl = 0.
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We put φ(x1, xl) = i jl for l = 2, . . . , n. This way we obtain w(xl) = i jl for
l = 1, . . . , n. ��

Theorem 2 follows easily from the above lemmas. IfG is a star, then we use Lemma
5. Otherwise we choose any spanning tree of G not being a star, and use Lemma 6
labelling all the remaining edges with 0. Observe that in the latter case same argument
as in the proof of Lemma 6 shows that for every graph G it is impossible to find
G-irregular labelling of G if G ∼= (Z2)

q for some q such that 2q = n + 2.

4 Computational complexity issues

In Sect. 2, the group irregularity strength sg(G) of an arbitrary connected graph G
was determined. It is natural to ask about the computational complexity of the corre-
sponding problem, where we assume that the group G is given in the most compact
form that follows from the fundamental theorem of Abelian groups.

Irregular Labeling.
Instance: A connected graph G, an Abelian group G of order |G|, given as the

list of (orders of) cyclic subgroups G1, . . . ,Gk of prime-power order such that G ∼=
G1 × . . . × Gk

Task: Find a G-irregular labelling of G or answer that it is impossible.
The proofs in Sect. 2 and 3 are constructive and lead to efficient algorithms for the

Irregular Labeling problem.
In order to construct an irregular labeling whose existence is proved in Sect. 2,

we first construct, in time O(|V (G)| + |E(G)|), a spanning tree T of the given
graph G. A proper 2-coloring of T can also be obtained in time O(|V (T )|) =
O(|V (G)|). The rest of the construction of the irregular labeling reduces to solv-
ing constantly many instances of the following problem: Given a tree T = (V, E)

and a non-empty set A ⊆ V of even cardinality, partition the elements of A
into pairs, say {a1, a2}, . . . , {a2r−1, a2r }, and construct the corresponding paths
P(a1, a2), . . . , P(a2r−1, a2r ) joining them. The problem is clearly solvable in poly-
nomial time. However, if the set A is large (as is the case for the subproblems one
needs to solve in order to construct an irregular labeling), the total length of the paths
P(a1, a2), . . . , P(a2r−1, a2r ) can be of the order �(|V |2). Can one do better? In par-
ticular, can the Irregular Labeling problem be solved in linear time?Wewill show
in this section that this is indeed the case. With this goal in mind, we introduce the
following optimization problem:

Shortest Path Collection.
Instance: A tree T = (V, E) and a non-empty set A ⊆ V of even cardinality.
Task:Find apartitionof the elements of A into pairs, say {{a1, a2}, . . . , {a2r−1, a2r }}

such that the value of
r∑

i=1

distT (a2i−1, ai )

is minimized.
Here, the distance distT (·, ·) is the usual graph-theoretic distance between ver-

tices, that is, the number of edges on a shortest path connecting the two vertices.
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The Shortest Path Collection problem can be solved in polynomial time not
only for trees but also for general graphs. In fact, it can be solved in time O(|V ||E |+r4)
where |A| = 2r , by first computing in time O(|V ||E |) all pairwise vertex distances
(this can be done using breadth-first search), and then solving an instance of the min-
imum weight perfect matching problem in a complete graph with vertex set A and
edge weights given by w(xy) = distT (x, y) for all pairs of distinct vertices x, y ∈ A
(this can be done, e.g., using the algorithm by Edmonds 1965). As we show below,
the problem can be solved in linear time for trees.

Proposition 1 There exists a linear time algorithm for theShortest Path Collec-
tion problem. Moreover, an optimal collection P of shortest paths, each connecting
one pair of vertices from the partition of A, can be constructed in linear time.

Proof Let (T, A) be an instance to the Shortest Path Collection problem. The
problem can be solved using a greedy algorithm, traversing the given tree T = (V, E)

bottom up and constructing optimal paths along the way. The algorithm outputs a pair
(A,P), whereA is a partition of the elements of A into pairs {a1, a2}, . . . , {a2r−1, a2r },
and P is the collection of corresponding paths in T connecting the paired vertices.
Traversing the tree bottom up, the algorithm updates two collectionsP andQ of paths
in T such that:

(1) every path fromP has exactly two endpoints in A (in particular,P does not contain
any trivial, one-vertex paths),

(2) every path from Q has exactly one endpoint in A (in particular, Q can contain
several trivial paths),

(3) no path from Q has a vertex in common with another path in P ∪ Q, and
(4) every two paths in P are edge disjoint, and have at most one vertex in common.

The set Q contains all paths that will be eventually extended to a path in the final
solution P . Moreover, for each path Q ∈ Q, its endpoints are denoted by a(Q), b(Q)

in such a way that a(Q) ∈ A. If Q is a trivial, one-vertex path then a(Q) = b(Q).
At every step of the algorithm, a vertex, say vi , of T is visited. Paths ofQ that have

a child of vi as one of their endpoints are greedily paired and merged, using vertex vi ,
to form paths in P . At the end of this pairing procedure, one path from Q that has a
child of vi as one of its endpoints could be left unpaired, in which case we extend it by
the edge connecting one of its endpoints to vi . If vi belongs to A, this extended path is
moved from Q to P . On the other hand, if all paths have been paired, then we check
whether vi belongs to A and if this is the case, we add toQ the trivial one-vertex path
consisting of vi .

Every time a path, say P , is added to the set P , the set A is augmented with the
pair containing the two endpoints of P . Moreover, the algorithm keeps at every vertex
a Boolean variable q(v) such that q(v) = 1 if and only if v is an endpoint of a path in
Q immediately after v is visited by the algorithm.

A pseudocode of the algorithm is given below (Algorithm 1). In the description of
the algorithm,we denote by P1+P2 the path obtained as the union of two edge-disjoint
paths P1 and P2 meeting at a vertex. Similarly, P1 + P2 + P3 denotes the union of
three paths (P1 + P2) + P3.
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Algorithm 1: Solving the Shortest Path Collection problem in trees
Input: A tree T = (V, E) and a non-empty set A ⊆ V with |A| even.
Output: A pair (A,P), where A is a partition of the elements of A into pairs {a1, a2}, . . . , {a2r−1, a2r },

minimizing
∑r

i=1 distT (a2i−1, ai ), and P is the collection of corresponding shortest paths.

Fix a root r ∈ V , and let v1, . . . , vn = r be the vertices of T listed in reverse order with respect to the time they are1
visited by a breadth-first traversal from r .
SetA = P = Q = ∅.2
for i = 1, 2, . . . , n do3

if i < n then4
Set q(vi ) = 0.5
Let C(vi ) be the set of children of vi , and let R(vi ) = {u ∈ C(vi ) : q(u) = 1}.6
Fix an ordering u1, . . . , uk of the elements of R(vi ).7
for j = 1, . . . , �k/2� do8

Let Q and Q′ be the paths in Q with b(Q) = u2 j−1 and b(Q′) = u2 j .9
Add the path Q + (u2 j−1, vi , u2 j ) + Q′ to P .10
Add the pair {a(Q), a(Q′)} toA.11
Remove Q and Q′ from Q.12

if k is odd then13
Let Q ∈ Q be the path inQ with b(Q) = uk .14
if vi ∈ A then15

Add the path Q + (uk , vi ) to P .16
Add the pair {a(Q), vi } to A.17

else18
Add the path Q′ = Q + (uk , vi ) toQ, with a(Q′) = a(Q), b(Q′) = vi .19
Set q(vi ) = 1.20

Remove Q from Q.21

else if vi ∈ A then22
Add the trivial path Q = (vi ) toQ, with a(Q) = b(Q) = vi .23
Set q(vi ) = 1.24

else25
//we are at the root
Let C be the set of children of vn = r , and let R = {v ∈ C : q(v) = 1}.26
Fix an ordering u1, . . . , uk of the elements of R.27
for j = 1, . . . , �k/2� do28

Let Q and Q′ be the paths in Q with b(Q) = u2 j−1 and b(Q′) = u2 j .29
Add the path Q + (u2 j−1, r, u2 j ) + Q′ to P .30
Add the pair {a(Q), a(Q′)} toA.31
Remove Q and Q′ from Q.32

if k is odd then33
//it must be the case that r ∈ A
Let Q ∈ Q be the path inQ with b(Q) = uk .34
Add the path Q + (uk , r) to P .35
Add the pair {a(Q), r} to A.36
Remove Q from Q.37

return (A,P)38

To establish the correctness of the algorithm,wewill show that the obtained solution
attains a lower bound on the optimal value. For every vertex v of tree T rooted at a
fixed vertex r , let k(v) denote the number of subtrees Ti of T rooted at the children of
v such that |A∩V (Ti )| is odd. Then, for every feasible solutionA′ to the problem, the
corresponding collectionP ′ of shortest paths contains at least k(v) edges connecting v

to its children. In particular, this implies that the optimal value of
∑r

i=1 distT (a2i−1, ai )
is at least

∑
v∈V (T ) k(v).
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Now let us verify that the value of
∑r

i=1 distT (a2i−1, ai ) attained by the solution
A given by Algorithm 1 is equal to

∑
v∈V (T ) k(v). For every i = 1, . . . , n, let Pi and

Qi denote the collections of paths P and Q after i iterations of the for loop in line
3 (that is, immediately after vertex vi has been visited). Properties (1)–(4) described
above (with Pi andQi in place of P andQ, respectively) can be proved by induction
on i . Moreover, for every 1 ≤ i < j ≤ n, it holds that Pi ⊆ P j , every path in Qi

is a subpath of some path in P j ∪ Q j , and Pn = P , where P is the final solution
output by the algorithm. Since the paths in P are edge-disjoint, the obtained value of∑r

i=1 distT (a2i−1, ai ) is equal to the total number of edges that appear in paths in P .
Induction on i can be used to show that:

(A) After vertex vi has been processed, q(vi ) = 1 if and only if |A ∩ V (Tvi )| is odd,
where Tvi is the subtree of T rooted at vi .

(B) The number of edges connecting vi to one of its children that are contained in a
path from Pi ∪ Qi is equal to k(vi ).

(C) The number of edges connecting vi to one of its children that are contained in
a path from P is the same as the number of edges connecting vi to one of its
children that are contained in a path from Pi ∪ Qi .

Since the final value of
∑r

i=1 distT (a2i−1, ai ) is equal to the total number of edges
that appear in paths in P , this value can be obtained by summing up, over all vertices
vi , the number of edges connecting vi to its children that are contained in a path from
P . By (B) and (C), this value is equal to the lower bound

∑n
i=1 k(vi ). Hence, the

proof of correctness is complete.
It remains to analyze the algorithm’s time complexity. A breadth-first traversal from

r takes O(n) time. A linear time implementation of the iterations of the for loop can
be achieved using an appropriate data structure representing the collections of paths
P and Q and their endpoints, and updating it at every iteration of the for loop. Each
path in P ∪ Q can be represented by a doubly linked list. The number of operations
performed by the algorithm during the i-th iteration of the for loop is then proportional
to the degree of vi . Altogether, this results in linear time complexity.

The last thing to calculate is the number of operations needed to label the edges.
We have to take into account three issues.

The first one is the division of G into three sets: a one-element set with the iden-
tity element, the set of involutions and the set of pairs {ai ,−ai } of the remaining
elements. In order to do that first we check the parity of all the cyclic subgroups
G1, . . . ,Gk , which can be done in time O(k) = O(log2(|G|)). Assume that the groups
G1, . . . ,Gp have even order and the groups Gp+1, . . . ,Gk are odd for some 1 ≤ p ≤ k.
Each element of G is represented by some k-tuple (g1, . . . , gk), where g j ∈ G j ,
1 ≤ j ≤ k and 0 ≤ g j ≤ |G j | − 1. The identity element of G is represented
by 0G = (0, . . . , 0). The involutions have the form (g1, . . . , gp, 0, . . . , 0), where
g j ∈ {0, |G j |/2} for 1 ≤ j ≤ p. The number of involutions is equal to 2p −1. Finally,
the pairs {ai ,−ai } have the form {(g1, . . . , gp, gp+1, . . . , gk), (|G1|− g1, . . . , |Gp|−
gp, |Gp+1| − gp+1, . . . , |Gk | − gk)}, where g j ∈ {0, . . . , |G j | − 1} for 1 ≤ j ≤ k − 1,
gk ∈ {0, . . . , �|Gk |�/2} and for at least one j , g j �∈ I j , where I j = {0, |G j |/2} for
1 ≤ j ≤ p and I j = {0} for p + 1 ≤ j ≤ k. It is easy to observe that no search is
necessary and the number of assignments is exactly |G|.
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The second issue is to find (if necessary) the set of involutions (plus identity
element in some cases) that sum up to 0. The constructive proof of Lemma 4 (see
Anholcer and Cichacz 2013) gives the method of choosing such a subset with time
complexity linear in the number of involutions. If the required number of elements
r ∈ {0, 1, 2p − 1, 2p}, then R = ∅ or R = {0} or R = I \ {0} or R = I , respec-
tively. If 3 ≤ r ≤ 2p−1, then we select r − 1 elements one by one in the lexico-
graphic order (here 0 j denotes the identity element of G j , in other words the 0 on jt h
position of the k-tuple): (01, . . . , 0p, 0p+1, . . . , 0k), (01, . . . , |Gp|/2, 0p+1, . . . , 0k),
(01, . . . , |Gp−1|/2, 0p, 0p+1, . . . , 0k), (01, . . . , |Gp−1|/2, |Gp|/2, 0p, 0p+1, . . . , 0k)
and so on. Now we calculate the sum of all chosen elements. It has the form
s = (01, g2 . . . , gp, 0p+1, . . . , 0), similarly to all the elements of the list. If s is
not on the list, then we add it to the list and we are done. Otherwise we choose another
element s1 of the list, (if s �= 0G then the one preceding s, otherwise the one following
it), and we change the first coordinate of both s and s1 from 01 to |G1|/2 and we are
done. The last case is when 2p−1 + 1 ≤ r ≤ 2p − 3. In such a case we construct
the (2p − r)-element set R1 and then take R = I \ R1. As it can be easily seen,
the complexity is at most r − 1 (choosing the elements) plus r − 2 (sum) plus r − 1
(checking if s is on the list) plus eventually 2 additional summations, what gives in
total O(|G|).

The third issue is the assignment of labels to the paths. If G is not a star, then it is
equal to the sum of the numbers of edges in the optimal solutions of the Shortest
Path Collection for A = V0, A = V1 \ V0 and A = V2 \ V0, where V0 is either
an empty set or some subset of V (G) with at most 8 elements, while V1 and V2 are
the color classes of the spanning tree T (G) of G. As all the paths in the optimal
solution of Shortest Path Collection are edge disjoint and we assign 0 to all
the edges in E(G) \ E(T (G)), the total number of assignments does not exceed
2|E(T (G))| + |E(G)| < 2|V (G)| + |E(G)|.

All the above calculations make sense if |G| fulfills all the necessary conditions.
Obviously they can be checked in constant time. Hence the following corollary
is true.

Corollary 1 The Irregular Labeling problem can be solved in time O(|E(G)| +
|G|).

Observe that in the case of |G| = sg(G) the complexity reduces to O(|E(G)|).
Note also that instead of the list of orders of prime-power cyclic groups, G can be
represented with the minimum-length list of the orders of cyclic groups (e.g. (2, 6)
instead of (2, 2, 3), as Z6 ∼= Z2 × Z3), and it would not change the method of the
division of G. It can also be represented as the list of generators with the relations
of the form n j g j = 0 (in the above example: G = [g1, g2|2g1 = 6g2 = 0])
but in such a case the list of multipliers n j is equivalent to the list of orders of
cyclic groups. Of course, in all those cases the complexity of division remains
O(|G|).
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5 Final remarks

As we solved the problem for all connected graphs, one next step would be to find the
solution for arbitrary graphs.

Problem 1 Determine group irregularity strength sg(G) for disconnected graph G
with no connected component of order less than 3.

Theorem 2 characterises all the pairs (G,G), |G| > sg(G), such that there exists an
irregular-G-labeling of given connected graphG of order at least 3. Thus the following
generalisation arises.

Problem 2 Characterise all the pairs (G,G), |G| > sg(G), such that there exists an
irregular-G-labeling of given graph G with no connected components of order less
than 3.

In the proof of Theorem 1 we often use the fact that we are allowed to use 0 on
edges. Thus the following problem is of significant interest.

Problem 3 Let G be a simple graph with no components of order less than 3. For
any Abelian group G, let G∗ = G \ {0}. Determine the non-zero group irregularity
strength (s∗

g(G)) of G, i.e., the smallest value of s such that taking any Abelian group
G of order s, there exists a function f : E(G) → G∗ such that the sums of edge labels
in every vertex are distinct.

All the elements of G can be obtained as some combination of not necessarily all
of its elements, in particular of its generators. The question is, how many elements of
G we have to use in order to obtain G-irregular labelling.

Problem 4 Assume that for given simple graph G with no components of order less
than 3 there exists G-irregular labelling for every group G of order s. What is the
minimum number k = k(G, s) such that for every group G of order s there is a subset
S ⊆ G, |S| ≤ k such that there exists a G-irregular labelling f : E(G) → S?

We have considered only finite Abelian groups in this paper. Our next question
seems to be a natural generalization of ordinary irregularity strength.

Problem 5 Let G be a simple graphwith no component of order less than 3. Determine
the smallest value of k such that for any infinite Abelian group G there exists a subset
S ⊆ G, S ≤ k such that there exists a G-irregular labelling f : E(G) → S.
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