Skip to main content
Log in

Oxo-Centered Trinuclear Chromium(III) Complexes with Both Carboxylate and Amidoximate Ligands

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Compounds [Cr III3 3-O)(O2CPh)5(H2N-sao)(EtOH)2]·EtOH (1·EtOH) and [Cr III3 3-O)(O2CPh)3(H2N-pao)3]NO3·H2N-paoH·EtOH (2·NO3·H2N-paoH·EtOH) have been obtained either in a sequential one-pot, two-step procedure in which Cr(NO3)3·9H2O is first reacted with sodium benzoate in ethanol under reflux, followed by the addition of salicylamidoxime (H2N-saoH2) or pyridine-2-amidoxime (H2N-paoH), or in a one-step protocol starting from [Cr III3 3-O)(O2CPh)6(EtOH)3]NO3. They were characterized by single-crystal X-ray diffraction, magnetometry and EPR spectroscopy. Complexes 1 and 2 are derived from the parent complex [Cr III3 3-O)(O2CPh)6(EtOH)3]+ by replacement of one and three benzoate ligands, respectively, by oximate ligands. The salicylamidoximate and pyridine-2-amidoximate ligands display a tridentate coordination mode with the N–O oximate group bridging a pair of Cr atoms and the additional ligating atom substituting for an ethanol ligand of the parent complex. In both cases susceptibility, magnetization and EPR data reveal a S T = 1/2 ground state with a nearly isotropic g-tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Clement (2002). Drug Metab. Rev. 34, 565–579.

    Article  CAS  Google Scholar 

  2. D. Shade, J. Kotthaus, H. Hungeling, J. Kotthaus, and B. Clement (2009). ChemMedChem 4, 1595–1599.

    Article  CAS  Google Scholar 

  3. K. C. Fylaktakidou, D. J. Hadjipavlou-Litina, K. E. Litinas, E. A. Varella, and D. N. Nicolaides (2008). Curr. Pharm. Des. 14, 1001–1047.

    Article  CAS  Google Scholar 

  4. M. Degardin, S. Wein, T. Durand, R. Escale, Y. Vo-Hoang, and H. Vial (2009). Bioorg. Med. Chem. Lett. 19, 5233–5236.

    Article  CAS  Google Scholar 

  5. A. Bouhlel, C. Curti, A. Dumètre, M. Laget, M. D. Crozet, N. Azas, and P. Vanelle (2010). Bioorg. Med. Chem. 18, 7310–7320.

    Article  CAS  Google Scholar 

  6. K. Thipyapong, T. Uehara, Y. Tooyama, H. Braband, R. Alberto, and Y. Arano (2011). Inorg. Chem. 50, 992–998.

    Article  CAS  Google Scholar 

  7. A. L. Rivas, H. A. Maturana, and S. Villegas (2000). J. Appl. Polym. Sci. 77, 1994–1999.

    Article  CAS  Google Scholar 

  8. K. Saeed, S. Haider, T.-J. Oh, and S.-Y. Park (2008). J. Membr. Sci. 322, 400–405.

    Article  CAS  Google Scholar 

  9. B. Gao, Y. Gao, and Y. Li (2010). Chem. Eng. J. 158, 542–549.

    Article  CAS  Google Scholar 

  10. B.-W. Zhang, K. Fischer, D. Bienek, and A. Kettrup (1993). React. Polym. 20, 207–216.

    Article  CAS  Google Scholar 

  11. R. Wenkert and S. Moisa (2008). Rev. Anal. Chem. 27, 131–160, 161–182, 183–201.

  12. M. R. Lutfor and M. Y. Mashitah (2011). E J. Chem. 8, 1038–1043.

    Article  CAS  Google Scholar 

  13. P. Chaudhuri (1999). Proc. Indian Acad. Sci. (Chem. Sci.) 111, 397–411.

    CAS  Google Scholar 

  14. A. G. Smith, P. A. Tasker, and D. J. White (2003). Coord. Chem. Rev. 241, 61–85.

    Article  CAS  Google Scholar 

  15. S. Zhang, L. Zhen, B. Xu, R. Inglis, K. Li, W. Chen, Y. Zhang, K. F. Konidaris, S. P. Perlepes, E. K. Brechin, and Y. Li (2010). Dalton Trans. 39, 3563–3571. and references therein.

    Article  CAS  Google Scholar 

  16. C. J. Milios, T. C. Stamatatos, and S. P. Perlepes (2006). Polyhedron 25, 134–194.

    Article  CAS  Google Scholar 

  17. A.-R. Tomsa, J. Martínez-Lillo, Y. Li, L.-M. Chamoreau, K. Boubekeur, F. Farias, M. A. Novak, E. Cremades, E. Ruiz, A. Proust, M. Verdaguer, and P. Gouzerh (2010). Chem. Commun. 46, 5106–5108.

    Article  CAS  Google Scholar 

  18. J. Martínez-Lillo, L.-M. Chamoreau, A. Proust, M. Verdaguer, and P. Gouzerh (2012). C. R. Chimie 15, 889–894.

    Article  CAS  Google Scholar 

  19. J. Martínez-Lillo, A.-R. Tomsa, Y. Li, L.-M. Chamoreau, E. Cremades, E. Ruiz, A. L. Barra, A. Proust, M. Verdaguer, and P. Gouzerh (2012). Dalton Trans. 41, 13668–13681.

    Article  CAS  Google Scholar 

  20. C. Papatriantafyllopoulou, L. F. Jones, T. D. Nguyen, N. Matamoros-Salvador, L. Cunha-Silva, P. A. Almeida Paz, J. Rocha, M. Evangelisti, E. K. Brechin, and S. P. Perlepes (2008). Dalton Trans. 24, 3153–3155.

    Article  CAS  Google Scholar 

  21. J. Martínez-Lillo, N. Dolan, and E. K. Brechin (2013). Dalton Trans. 42, 12824–12827.

    Article  CAS  Google Scholar 

  22. G.-Y. An, C.-M. Ji, A.-L. Cui, and H.-Z. Kou (2011). Inorg. Chem. 50, 1079–1083.

    Article  CAS  Google Scholar 

  23. P. Chaudhuri, M. Hess, E. Rentschler, T. Weyhermüller, and U. Flörke (1998). New. J. Chem. 22, 553–555.

    Article  CAS  Google Scholar 

  24. S. Ross, T. Weyhermüller, E. Bill, K. Wieghardt, and P. Chaudhuri (2001). Inorg. Chem. 40, 6656–6665.

    Article  CAS  Google Scholar 

  25. K. V. Pringouri, C. P. Raptopoulou, A. Escuer, and T. C. Stamatatos (2007). Inorg. Chim. Acta 360, 69–83.

    Article  CAS  Google Scholar 

  26. M. V. Barybin, P. L. Diaconescu, and C. C. Cummins (2001). Inorg. Chem. 40, 2892–2897.

    Article  CAS  Google Scholar 

  27. F. Tiemann and P. Krüger (1884). Ber. Dtsch. Chem. Ges. 17, 1685.

    Article  Google Scholar 

  28. E. Bernasek (1957). J. Org. Chem. 22, 1263.

    Article  CAS  Google Scholar 

  29. G. A. Bain and J. F. Berry (2008). J. Chem. Educ. 85, 532–536.

    Article  CAS  Google Scholar 

  30. A. Figuerola, V. Tangoulis, J. Ribas, H. Hartl, I. Brüdgam, M. Maestro, and C. Diaz (2007). Inorg. Chem. 46, 11017–11024.

    Article  CAS  Google Scholar 

  31. A. J. M. Duisenberg, L. M. J. Kroon-Batenburg, and A. M. Schreurs (2003). J. Appl. Crystallogr. 36, 220–229.

    Article  CAS  Google Scholar 

  32. R. H. Blessing (1995). Acta Cryst. A 51, 33–38.

    Article  Google Scholar 

  33. G. M. Sheldrick (2008). Acta Cryst. A 64, 112–122.

    Article  CAS  Google Scholar 

  34. K. Brandenburg and M. Berndt Diamond (Crystal Impact GbR, Bonn, 1999).

    Google Scholar 

  35. F. E. Sowrey, C. Tilford, S. Wocadlo, C. E. Anson, A. K. Powell, S. M. Bennington, W. Montfrooij, U. A. Jayasooriya, and R. D. Cannon (2001). Dalton Trans. 6, 862–866.

    Article  Google Scholar 

  36. C. P. Raptopoulou, Y. Sanakis, A. K. Boudalis, and V. Psycharis (2005). Polyhedron 24, 711–721.

    Article  CAS  Google Scholar 

  37. K. Kambe (1950). J. Phys. Soc. Jpn. 5, 48–51.

    Article  CAS  Google Scholar 

  38. J.-P. Launay and M. Verdaguer, Electrons in Molecules (Oxford University Press, Oxford, 2013), Chap. 2.

  39. R. D. Cannon and R. P. White (1988). Prog. Inorg. Chem. 36, 195–297.

    Article  CAS  Google Scholar 

  40. R. L. Lieberman, A. Bino, N. Mirsky, D. A. Summers, and R. C. Thompson (2000). Inorg. Chim. Acta 297, 1–5.

    Article  CAS  Google Scholar 

  41. A. Vlachos, V. Psycharis, C. P. Raptopoulou, N. Lalioti, Y. Sanakis, G. Diamantopoulos, M. Fardis, M. Karayanni, G. Papavassiliou, and A. Terzis (2004). Inorg. Chim. Acta 357, 3162–3172.

    Article  CAS  Google Scholar 

  42. M. K. Nagi, A. Harton, S. Donald, Y.-S. Lee, M. Sabat, C. J. O’Connor, and J. B. Vincent (1995). Inorg. Chem. 34, 3813–3820.

    Article  CAS  Google Scholar 

  43. C. J. Milios, A. Prescimone, A. Mishra, S. Parsons, W. Wernsdorfer, G. Christou, S. P. Perlepes, and E. K. Brechin (2007). Chem. Commun. 2, 153–155.

    Article  CAS  Google Scholar 

  44. J. M. Thorpe, R. L. Beddoes, D. Collison, C. D. Garner, M. Helliwell, J. M. Holmes, and P. A. Tasker (1999). Angew. Chem. Int. Ed. 38, 1119–1121.

    Article  CAS  Google Scholar 

  45. C. P. Raptopoulou, A. K. Boudalis, Y. Sanakis, V. Psycharis, J. M. Clemente-Juan, M. Fardis, G. Diamantopoulos, and G. Papavassiliou (2006). Inorg. Chem. 45, 2317–2326.

    Article  CAS  Google Scholar 

  46. S.-G. Roh, A. Proust, F. Robert, and P. Gouzerh (1996). J. Clust. Sci. 7, 593–627.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lise-Marie Chamoreau for her help in the preparation of some figures. ART acknowledges the Université Pierre et Marie Curie for a post-doctoral grant. We also acknowledge support from the Centre National de la Recherche Scientifique. We are also thankful to the RENARD network, more specifically to Prof. D. Gourier and Dr. L. Binet from Chimie ParisTech (UMR 7574, CNRS - UPMC, Paris 6), for access to the EPR spectrometer and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre Gouzerh or Anna Proust.

Additional information

Dedicated in memory of our friends and colleagues Roland Contant and Louis Nadjo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 717 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomsa, AR., Li, Y., Blanchard, S. et al. Oxo-Centered Trinuclear Chromium(III) Complexes with Both Carboxylate and Amidoximate Ligands. J Clust Sci 25, 825–838 (2014). https://doi.org/10.1007/s10876-013-0669-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0669-x

Keywords

Navigation