Skip to main content
Log in

Hydrogenation of B 0/−12 : A Planar-to-Icosahedral Structural Transition in B12H 0/− n (n = 1–6) Boron Hydride Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A systematic density functional theory and wave function theory investigation performed in this work reveals a planar-to-icosahedral structural transition between n = 4–5 in the partially hydrogenated B12H 0/− n clusters (n = 1–6) upon hydrogenation of all-boron B 0/−12 . Coupled cluster calculations with triple excitations (CCSD(T)) indicate that a distorted icosahedral B12H6 cluster with C2 symmetry is overwhelmingly favored (by 35 kcal/mol) over the recently proposed perfectly planar borozene (D3h B12H6) (Szwacki et al., Nanoscale Res Lett 4:1085, 2009) which proves to be a high-lying local minimum. A similar 2D–3D structural transition occurs to the corresponding boron boronyl analogues of B12(BO) n with n –BO terminals. Detailed adaptive natural density partitioning (AdNDP) analyses reveal the bonding patterns of these quasi-planar or cage-like clusters which are characterized with delocalized σ and π molecular orbitals. The electron detachment energies of the concerned anions and excitation energies of the neutrals are also predicted to facilitate their future experimental characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. A. Cotton, G. Wilkinson, C. A. Murrillo, and M. Bochmann Advanced Inorganic Chemistry, 6th ed (John Wiley & Sons, New York, 1999).

    Google Scholar 

  2. A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, and L. S. Wang (2006). Coord. Chem. Rev. 250, 2811.

    Article  CAS  Google Scholar 

  3. M. Y. Zubarev and A. I. Boldyrev (2007). J. Comput. Chem. 28, 251.

    Article  CAS  Google Scholar 

  4. H.-J. Zhai, B. Kiran, J. Li, and L. S. Wang (2003). Nat. Mater. 2, 827.

    Article  CAS  Google Scholar 

  5. B. Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, and L. S. Wang (2005). Proc. Natl Acad. Sci. USA 102, 961.

    Article  CAS  Google Scholar 

  6. A. P. Sergeeva, D. Y. Zubarev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2008). J. Am. Chem. Soc. 130, 7244.

    Article  CAS  Google Scholar 

  7. W. Huang, A. P. Sergeeva, H. J. Zhai, B. B. Averkiev, L. S. Wang, and A. I. Boldyrev (2010). Nat. Chem. 2, 202.

    Article  Google Scholar 

  8. A. P. Sergeeva, B. B. Averkiev, H. J. Zhai, A. I. Boldyrev, and L. S. Wang (2011). J. Chem. Phys. 134, 224304.

    Article  Google Scholar 

  9. N. G. Szwacki, V. Weber, and C. J. Tymczak (2009). Nanoscale Res. Lett. 4, 1085.

    Article  Google Scholar 

  10. G. Forte, A. La Magna, I. Deretzis, and R. Pucci (2010). Nanoscale Res. Lett. 5, 158.

    Article  CAS  Google Scholar 

  11. S. Sahu and A. Shukla (2010). Nanoscale Res. Lett. 5, 714.

    Article  CAS  Google Scholar 

  12. N. G. Szwacki (2008). Nanoscale Res. Lett. 3, 49.

    Article  CAS  Google Scholar 

  13. A. N. Alexandrova, E. Koyle, and A. I. Boldyrev (2006). J. Mol. Model. 12, 569.

    Article  CAS  Google Scholar 

  14. M. Boyukata, C. Ozdogan, and Z. B. Guvenc (2007). J. Mol. Struct. (THEOCHEM) 805, 91.

    Article  Google Scholar 

  15. A. N. Alexandrova, K. A. Birch, and A. I. Boldyrev (2003). J. Am. Chem. Soc. 125, 10786.

    Article  CAS  Google Scholar 

  16. Y. Ohishi, K. Kimura, M. Yamaguchi, N. Uchida, and T. Kanayama (2008). J. Chem. Phys. 128, 124304.

    Article  Google Scholar 

  17. D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207.

    Article  CAS  Google Scholar 

  18. D. Y. Zubarev and A. I. Boldyrev (2008). J. Org. Chem. 73, 9251.

    Article  CAS  Google Scholar 

  19. D. Y. Zubarev and A. I. Boldyrev (2009). J. Phys. Chem. A 113, 866.

    Article  CAS  Google Scholar 

  20. Q. Chen and S. D. Li (2011). J. Clust. Sci. doi:10.1007/s10876–011-0400–8.

  21. Q. Chen, H. Bai, J. C. Guo, C. Q. Miao, and S. D. Li (2011). Phys. Chem. Chem. Phys., submitted.

  22. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  23. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  24. M. Head-Gordon, J. A. Pople, and M. Frisch (1988). Chem. Phys. Lett. 153, 503.

    Article  CAS  Google Scholar 

  25. M. Head-Gordon and T. Head-Gordon (1994). Chem. Phys. Lett. 220, 122.

    Article  CAS  Google Scholar 

  26. J. A. Pople, M. Head-Gordon, and K. Raghavachari (1987). J. Chem. Phys. 87, 5968.

    Article  CAS  Google Scholar 

  27. G. E. Scuseria and H. F. Schaefer III (1989). J. Chem. Phys. 90, 3700.

    Article  CAS  Google Scholar 

  28. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer III (1988). J. Chem. Phys. 89, 7382.

    Article  CAS  Google Scholar 

  29. J. Cizek (1969). Adv. Chem. Phys. 14, 35.

    Article  CAS  Google Scholar 

  30. G. Schaftenaar, MOLDEN, version 4.1 (Centre for Molecular and Biomolecular Informatics (CMBI), Nijmegen, 2003).

  31. P. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. van Eikema Hommes (1996). J. Am. Chem. Soc. 118, 6317.

    Article  CAS  Google Scholar 

  32. H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta, and P. R. Schleyer (2006). Org. Lett. 8, 863.

    Article  CAS  Google Scholar 

  33. K. Wolinski, J. F. Hilton, and P. Pulay (1990). J. Am. Chem. Soc. 112, 8251.

    Article  CAS  Google Scholar 

  34. M. J. Frisch, et al. Gaussian 03, Revision, A. 1 (Gaussian, Inc., Pittsburgh, PA, 2003).

    Google Scholar 

  35. H. J. Zhai, M. Wang, S. D. Li, and L. S. Wang (2007). J. Phys. Chem. A 111, 1030.

    Article  CAS  Google Scholar 

  36. H. J. Zhai, S. D. Li, and L. S. Wang (2007). J. Am. Chem. Soc. 129, 9254.

    Article  CAS  Google Scholar 

  37. S. D. Li, H. J. Zhai, and L. S. Wang (2008). J. Am. Chem. Soc. 130, 2573.

    Article  CAS  Google Scholar 

  38. H. Tang and S. Ismail-Beigi (2007). Phys. Rev. Lett. 99, 115501.

    Article  Google Scholar 

  39. H. Tang and S. Ismail-Beigi (2009). Phys. Rev. B. 80, 134113.

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Science Foundation of China (No. 20873117) and Shanxi Natural Science Foundation (No. 2010011012-3). The authors are grateful to Professor A. I. Boldyrev and Dr. T. Galeev and A. Sergeeva at Utah State University for their generous help in using the AdNDP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Dian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, H., Li, SD. Hydrogenation of B 0/−12 : A Planar-to-Icosahedral Structural Transition in B12H 0/− n (n = 1–6) Boron Hydride Clusters. J Clust Sci 22, 525–535 (2011). https://doi.org/10.1007/s10876-011-0408-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0408-0

Keywords

Navigation