Skip to main content
Log in

Spatiotemporal distribution of copepod populations in the Gulf of Gdansk (southern Baltic Sea)

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

In the present study, we used a 3D Coupled Ecosystem Model of Baltic Sea version 1 (3D CEMBSv1) coupled with a copepod model to examine the spatiotemporal distribution of two representative copepod populations in the Gulf of Gdansk (southern Baltic Sea) including Acartia spp. and Pseudocalanus minutus elongatus. The annual cycles simulated for 2000 under realistic weather and hydrographic conditions were studied with the three-dimensional version of the coupled ecosystem-copepod model in the south-eastern Baltic Sea. The paper presents the comparison of simulated and observed copepod development at two stations in the Gulf of Gdansk. A validation of influential state variables gives confidence that the model is able to calculate reliably the stage development of dominant species in the southern Baltic Sea. The number of generations was one for P. m. elongatus and 3–5 for Acartia spp.. A mean of five generations for the latter species per year were estimated in the coastal region and ca. three generations at the Gdansk Deep (in the open sea). Food concentration and temperature as the main factors controlling the development of the investigated copepods as well as salinity as a masking factor (i.e. salinity modifies the rate of their development) in the case of Pseudocalanus minutus elongatus are included in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ambler JW (1985) Seasonal factors affecting egg production and viability of eggs of Acartia tonsa Dana, from East Lagoon, Galveston, Texas. Estuar Costl Shelf Sci 20:743–760

    Article  Google Scholar 

  • Billen G, Lancelot C, Maybeck M (1991) N, P and Si retention along the aquatic continuum from land to ocean. In: Mantoura RFC, Martin JM, Wollast R (eds) Ocean margin processes in global change, physical, chemical, and earth sciences research, report 9. Wiley, New York, pp 19–44

    Google Scholar 

  • Bollens SM, Frost BW (1989) Zooplanktivorous fish and variable diel vertical migration in the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 34:1072–1083

    Google Scholar 

  • Chojnacki J, Drzycimski I., Siudzinski K (1986) Charakterystyka ekologiczna ważniejszych skorupiaków planktonowych poludniowego Baltyku. Stud Mat MIR Gdynia A(27):5–24 (in Polish)

  • Ciszewski P (1962) Zooplankton of the Southern Baltic. Papers of MIR, Gdynia A(11):37–38 (in Polish)

  • Ciszewski P (1983) Estimation of zooplankton biomass and production in the Southern Baltic. Pol Ecol Stud 9:387–396

    Google Scholar 

  • Ciszewski P, Witek Z (1977) Production of older stages of copepods Acartia bifilosa Giesb. and Pseudocalanus elongatus Boeck in Gdansk Bay. Pol Arch Hydrobiol 24:449–459

    Google Scholar 

  • Dzierzbicka-Glowacka L (1994) Numerical analysis of the influence of the grazing on the two-dimensional distribution function of the phytoplankton concentration in a stratified sea. Oceanologia 36(2):155–173

    Google Scholar 

  • Dzierzbicka-Glowacka L (2004) Growth and development of copepodite stages of Pseudocalanus spp. J Plankton Res 26:49–60

    Article  Google Scholar 

  • Dzierzbicka-Glowacka L (2005a) Equivalence of rates of growth and egg production of Pseudocalanus spp. Ocean Hydrobiol Stud 34(4):19–32

    Google Scholar 

  • Dzierzbicka-Glowacka L (2005b) A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdansk Gulf. J Mar Syst 53:19–36

    Article  Google Scholar 

  • Dzierzbicka-Glowacka L (2005c) Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1: a coupled ecosystem model. Oceanologia 47(4):591–619

    Google Scholar 

  • Dzierzbicka-Glowacka L (2006) Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2: numerical simulations. Oceanologia 48(1):41–71

    Google Scholar 

  • Dzierzbicka-Glowacka L, Bielecka L, Mudrak S (2006) Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdansk Deep)—numerical simulations. Biogeosciences 3:635–650

    Article  Google Scholar 

  • Dzierzbicka-Glowacka L, Lemieszek A, Zmijewska IM (2009a) Parameterization of a population model for Acartia spp. in the southern Baltic Sea. Part 1: development time. Oceanologia 51(2):165–184

    Article  Google Scholar 

  • Dzierzbicka-Glowacka L, Lemieszek A, Żmijewska IM (2009b) Parameterization of a population model for Acartia spp. in the southern Baltic Sea. Part 2: egg production. Oceanologia 51(2):185–201

    Article  Google Scholar 

  • Dzierzbicka-Glowacka L, Zmijewska IM, Mudrak S, Jakacki J, Lemieszek A (2010) Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea. Biogeosciences 7:2247–2259

    Article  Google Scholar 

  • Dzierzbicka-Glowacka L, Jakacki J, Janecki M, Nowicki A (2011) Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea. Oceanologia 53(1-TI):449–470

    Google Scholar 

  • Frost BW (1989) A taxonomy of the marine calanoid copepod genus Pseudocalanus. Can J Zool 67:525–551

    Article  Google Scholar 

  • Goodkin NF, Hughen KA, Doney SC, Curry WB (2008) Increased multidecadal variability of the North Atlantic Oscillation since 1781. Nat Geosci 1:844–848

    Article  Google Scholar 

  • HELCOM (2003) The Baltic marine environment 1999–2002. In: Baltic Sea environment proceedings

  • HELCOM (2005) Nutrient pollution to the Baltic Sea in 2000. In: Baltic Sea environmental proceedings

  • HELCOM (2006) Development of tools for assessment of eutrophication in the Baltic Sea. Baltic Sea environmental proceedings

  • Hernroth L (1985) Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. Balt Mar Biol 10:1–32

    Google Scholar 

  • Katajisto T (2006) Benthic resting eggs in the life cycles of calanoid copepods in the northern Baltic Sea. W. & A. de Nottbeck Foundation Sci Rep 29:1–46

  • Kinne O (1963) The effects of temperature and salinity on marine and brackish water animals. I. Temperature. Oceanogr Mar Biol Ann Rev 1:301–340

    Google Scholar 

  • Klein Breteler WCM, Gonzales SR, Schogt N (1995) Development of Pseudocalanus elongatus (Copepoda, Calanoida) cultured at different temperature and food conditions. Mar Ecol Prog Ser 119:99–110

  • Kleppel GS, Holliday DV, Pieper RE (1991) Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnol Oceanogr 36:172–178

    Article  Google Scholar 

  • Kleppel GS (1992) Environmental regulation of feeding and egg production by Acartia tonsa off southern California. Mar Biol 112:57–65

    Article  Google Scholar 

  • Koszteyn J (1985) Wertykalne zróżnicowanie skladu jakościowego i ilościowego mezoplanktonu w wodach Basenu Gdańskiego i Rynny Slupskiej w lipcu 1980 roku. Stud Mater Oceanol 46(7):193–212 (in Polish)

    Google Scholar 

  • Krause M, Dippner JW, Beil J (1995) A review of hydrographic controls on the distribution of zooplankton biomass and species in the North Sea with particular reference to a survey conducted in January–March 1987. Prog Oceanogr 35:81–152

    Article  Google Scholar 

  • Longhurst AR, Harrison WG (1989) The biological pump: profiles of plankton production and consumption in the upper ocean. Prog Oceanogr 22:47–123

    Article  Google Scholar 

  • Longhurst AR (1981) Analysis of marine ecosystems. Academic, London

    Google Scholar 

  • Longhurst AR (2007) Ecological geography of the sea. Academic, London

    Google Scholar 

  • Majewski A (1990) Morfometria i hydrografia zlewiska. In: Majewski A (ed) Zatoka Gdańska. Wydawnictwo Geologiczne, Warszawa, pp 10–19 (in Polish)

    Google Scholar 

  • Mankowski W (1978) Baltic zooplankton and its productivity. Productivity of Baltic sea ecosystem. Ossolineum, Wroclaw–Warszawa–Kraków–Gdansk, pp 113–134

  • McLaren IA, Leonard A (1995) Assessing the equivalence of growth and egg production of copepods. ICES J Mar Sci 52:397–408

    Article  Google Scholar 

  • McLaren IA, Sevigny J-M, Cockett CJ (1989) Temperature-dependent development among Pseudocalanus species. Can J Zool 67:559–564

    Google Scholar 

  • Möllmann C, Kornilovs G, Sidrevics L (2000) Long-term dynamics of main mesozooplankton species in the Central Baltic Sea. J Plankton Res 22:2015–2038

    Article  Google Scholar 

  • Mudrak S (2004) Short- and long-term variability of zooplankton in coastal Baltic waters: using the Gulf of Gdańsk as an example. PhD thesis, University of Gdansk, Gdynia

  • Mudrak S, Zmijewska MI (2007) Spatio-temporal variability of mesozooplankton from the Gulf of Gdańsk (Baltic Sea) in 1999–2000. Oceanol Hydrobiol Stud 36:3–19

    Article  Google Scholar 

  • Norrbin MF (1996) Timing of diapause in relation to the onset of winter in the high- latitude copepods Pseudocalanus acuspes and Acartia longiremis. Mar Ecol Prog Ser 142:99–109

    Google Scholar 

  • Ojaveer E, Alken J (1997) On regional subunits in the ecosystem of the Baltic Sea. In: Proceedings of the 14th BMB Symposium, pp 156–169

  • Postel L (2005) Habitat layer extension and the occurrence of dominant calanoid copepods in the Baltic Sea. http://www.helcom.fi/environment2/ifs/archive/ifs

  • Radach G, Moll A (1993) Estimation of the variability of production by simulating annual cycles of phytoplankton in the central north Sea. Prog Oceanogr 31:339–419

    Article  Google Scholar 

  • Renk H (2000) Primary production in the southern Baltic. Sea Fisheries Institute in Gdynia, Stud Mater 3(A), p 78 (in Polish)

  • Renz J, Hirche H-J (2006) Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: I. Seasonal and spatial distribution; Mar Biol 148:567–580

    Google Scholar 

  • Renz J, Peters J, Hirche H-J (2007) Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: II. Reproduction, growth and secondary production. Mar Biol 151:515–527

    Article  Google Scholar 

  • Reissmann JH, Burchard H, Feistel R, Hagen E, Lass HU, Mohrholz V, Nausch G, Umlauf L, Wieczorek G (2009) Vertical mixing in the Baltic Sea and consequences for eutrophication—a review. Prog Oceanogr 82:47–80

    Article  Google Scholar 

  • Rozwadowska A, Isemer H-J (1998) Solar radiation fluxes at the surface of the Baltic Proper. Part 1: mean annual cycle and influencing factors. Oceanologia 40:307–330

    Google Scholar 

  • Schmidt K, Kähler P, Bodungen B (1998) Copepod egg production rates in the Pomerania Bay (southern Baltic Sea) as a function of phytoplankton abundance and taxonomic composition. Mar Ecol Prog Ser 174:183–195

    Article  Google Scholar 

  • Sekiguchi H, McLaren IA, Corkett CJ (1980) Relationship between growth rate and egg production in the copepod Acartia clausi Hudsonica. Mar Biol 58:133–138

    Article  Google Scholar 

  • Shaffer G (1987) Redfield rations, primary production and organic carbon burial in the Baltic Sea. Deep Sea Res 34:769–784

    Article  Google Scholar 

  • Skura SP (2003) Gopepoda in the Gdańsk deep (June 2001). PhD thesis, University of Gdańsk, Gdynia

  • Stegert C, Kreus M, Carlotti F, Moll A (2007) Parameterisation of a zooplankton population model for Pseudocalanus elongatus using stage duration laboratory experiments. Ecol Model 206:214–234

    Google Scholar 

  • Telesh I, Postel L, Heerkloss R, Mironova E, Skarlato S (2009) Zooplankton of the open Baltic Sea: extended atlas. BMB publication no. 21—Meereswiss. Ber. Warnemünde 76:1–290

    Google Scholar 

  • Viitasalo M (1992) Calanoid resting eggs in the Baltic Sea: implications for the population dynamics of Acartia bifilosa (Copepoda). Mar Biol 114:397–405

    Google Scholar 

  • Vinogradow ME, Shushkina EA (1987) Functioning of plankton communities in the euphotic zone of the ocean. Nauka, Moskwa (in Russian)

    Google Scholar 

  • Voipio A (1981) The Baltic Sea. Elsevier, Amsterdam, pp 123–143

    Google Scholar 

  • Wiktor K (1982) Wpływ metody zbioru zooplanktonu wód przybrzeżnych Bałtyku Południowego na wyniki analiz jakościowych i ilościowych. Oceanography 9:93–109 (in Polish)

    Google Scholar 

  • Wiktor K (1990) Zooplankton biomass in the coastal waters of Gdańsk Gulf. Oceanography 12:109–134 (in Polish)

    Google Scholar 

  • Witek Z (1995) Biological production and its utilization within a marine ecosystem in the western Gdansk basin. Sea Fisheries Institute, Gdynia, Poland, pp 145 (in Polish)

  • Witek Z, Bralewska J, Chmielewski H, Drgas A, Gostkowska J, Kopacz M, Knurowski J, Krajewska-Sołtys J, Lorenz Z, Maciejewska K, Mackiewicz T, Nakonieczny J, Ochocki S, Warzocha J, Piechura J, Renk H, Stopiński M, Witek B (1993) Structure and function of marine ecosystem in the Gdańsk Basin on the basis of studies performed in 1987. Stud Mater Oceanol 63:5–125

Download references

Acknowledgments

This work was supported by the Polish State Committee of Scientific Research (grant number: NN306 353239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Dzierzbicka-Glowacka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzierzbicka-Glowacka, L., Piskozub, J., Jakacki, J. et al. Spatiotemporal distribution of copepod populations in the Gulf of Gdansk (southern Baltic Sea). J Oceanogr 68, 887–904 (2012). https://doi.org/10.1007/s10872-012-0142-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-012-0142-8

Keywords

Navigation