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Abstract
Computational design of antimicrobial peptides (AMPs) is a promising area of research 
for developing novel agents against drug-resistant bacteria. AMPs are present naturally 
in many organisms, from bacteria to humans, a time-tested mechanism that makes them 
attractive as effective antibiotics. Depending on the environment, AMPs can exhibit 
α-helical or β-sheet conformations, a mix of both, or lack secondary structure; they can be 
linear or cyclic. Prediction of their structures is challenging but critical for rational design. 
Promising AMP leads can be developed using essentially two approaches: traditional mod-
eling of the physicochemical mechanisms that determine peptide behavior in aqueous and 
membrane environments and knowledge-based, e.g., machine learning (ML) techniques, 
that exploit ever-growing AMP databases. Here, we explore the conformational landscapes 
of two recently ML-designed AMPs, characterize the dependence of these landscapes on 
the medium conditions, and identify features in peptide and membrane landscapes that 
mediate protein-membrane association. For both peptides, we observe greater confor-
mational diversity in an aqueous solvent than in a less polar solvent, and one peptide is 
seen to alter its conformation more dramatically than the other upon the change of solvent. 
Our results support the view that structural rearrangement in response to environmental 
changes is central to the mechanism of membrane-structure disruption by linear peptides. 
We expect that the design of AMPs by ML will benefit from the incorporation of peptide 
conformational substates as quantified here with molecular simulations.
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1  Introduction

A growing number of infections are becoming increasingly difficult to treat because the 
causative pathogens can mutate and become resistant to existing antibiotics [1–3]. This 
race against pathogenic bacteria is ongoing, as new drugs can become ineffective in a few 
years. Some strains have already acquired resistance to all or nearly all known antibiotics, 
including those considered as last resort [4]. The few options left in the therapeutic arsenal 
have sparked concerns that the “antibiotic era” may be nearing its end [5]. New approaches 
are needed to design effective and potent drugs. Antimicrobial peptides (AMPs) [6–8] 
exhibit strong antibacterial properties, as measured, e.g., by the minimal concentration 
(MIC) needed to inhibit bacterial growth. AMPs are present naturally in many organisms 
[8, 9], from bacteria, where they act against other bacterial species in their competition for 
resources, to humans, as a first line of defense of the immune system. This ubiquitous anti-
microbial mechanism has sustained hopes that short peptides, if appropriately designed, 
could form the basis of effective and potent antibiotics, either of broad utility or for a spe-
cific species (e.g., E. coli, S. aureus), strain, or group (gram-positive or gram-negative). 
However, as is often the case in drug development, poor understanding of their mecha-
nisms of action, i.e., the specific molecular processes underlying the suppression of bacte-
rial growth, has hampered progress. Several mechanisms are known, and others have been 
proposed [7, 10, 11]. AMPs can act on a variety of targets in bacterial cells. Some mecha-
nisms of action involve modulation of the host immune system, which is redirected to kill 
and clear the foreign pathogen. Others include internal (cytosolic) targets, such as enzymes 
necessary for cell survival and growth, or membrane-bound proteins and complexes, such 
as lipid receptors, e.g., for lipid II, which is needed for the synthesis of the protective pep-
tidoglycan wall, the complex polymeric mesh-like structure that separates the inner and 
outer lipid membranes [12, 13].

Of particular interest are mechanisms that disrupt the inner membrane, mechanisms 
for which bacteria may have fewer options to develop resistance, as that would require a 
reconfiguration of the lipid bilayer. The precise molecular mechanisms of the disruption 
of membrane structure are system dependent and typically unknown. Much effort has been 
devoted to elucidating them in specific cases, and some models have been proposed [7, 
10, 11]. Cell death results either from the formation of transmembrane pores leading to 
leakage of ions or from more extensive damage to the membrane integrity, whereby water, 
ions, ATP, and other small and large (DNA/RNA) molecules can escape the cell interior. 
The result is either cell depolarization or lysis.

The computational design of an AMP entails optimizing the peptide sequence to bind 
and disrupt the bacterial inner membrane while leaving the mammalian membrane intact. 
AMP development is challenging because therapeutic value also depends on toxicity, pro-
teolytic degradation, and oral bioavailability. Organism selectivity is possible because bac-
terial and mammalian cell membranes differ in composition. The inner membrane of bac-
terial cells is typically anionic, whereas the mammalian cell is zwitterionic. They are also 
composed of a mixture of lipid types (e.g., POPG, cardiolipin in bacteria; POPC, choles-
terol in mammalian cells) that differ in their head-group chemistries, lengths of hydrocar-
bon chains, and relative concentrations. Their interactions with a particular peptide depend 
on its amino acid composition and on the conformations it adopts in the aqueous phase.

Given the complexity and size of these systems, the elucidation of membrane-structure 
disruption by molecular simulation alone is a daunting challenge. Therefore, a data-science 
approach may prove to be valuable, as some of the techniques devised, such as machine 
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learning (ML), can extract valuable, non-obvious information from available data [14, 
15]. ML sidesteps molecular details, instead modeling correlations in various input data, 
e.g., peptide amino acid sequence and MIC [16]. The price of this simplification is that 
large amounts of data are needed for training before attempting reliable predictions. These 
training data must ultimately be obtained from experiments or computer simulations. If 
successful, the algorithm could predict whether a given sequence, not previously seen by 
the machine, would exhibit antimicrobial activity. If adequately trained, it might predict 
whether the peptide is selective for a specific bacterial species, strain, or group, or whether 
it would be toxic to mammalian cells. Several repositories of AMP data have been created, 
with the DBAASP being one of the largest and most comprehensive databases available 
[17].

Recent de novo design of AMPs produced short peptides exhibiting high antimicrobial 
activity and low hemolytic activity [16]. Two of these peptides, denoted SP4 and SP15, 
were suggested to affect the permeability of bacterial membranes differently. Both enhance 
permeability at high concentrations (~ 100 μg/mL), but at lower concentrations closer to 
each peptide’s MIC, SP4 and SP15 were observed to behave differently. At 12.5 μg/mL 
SP4 affected permeability; at 3.125 μg/mL SP15 did not.

We have simulated the conformations and dynamics of the SP4 and SP15 peptides in 
aqueous and membrane-like environments at 37 ºC to help interpret their effects on mem-
brane permeability. For each peptide-solvent pair, we have modeled the energy landscape 
[18] at two  levels of approximation. We performed structure-prediction calculations, 
in which an efficiently calculated, continuum representation of each solvent was used to 
facilitate conformational exploration sufficient to make reasonable predictions of the pre-
dominant conformations sampled at equilibrium. The stabilities of these predicted con-
formational families were then assessed using a computationally more intensive, all-atom 
description of each solvent. Finally, we performed Monte Carlo simulations to show how 
peptide binding modes differ among membranes and conformational families and to obtain 
initial peptide-membrane configurations for elucidating molecular mechanisms through 
dynamics simulation.

Our results suggest that the ability of a peptide to change its conformation in response 
to environmental changes, along with the existence of multiple conformational substates 
in equilibrium, may be central to the experimental observations. The significance of the 
connection between a biomolecule’s functionally important motions and its environment 
has been appreciated for some time, thanks in large part to the pioneering work of Hans 
Frauenfelder. With his spectroscopic studies of heme proteins, Frauenfelder illuminated the 
protein energy landscape [18], revealing a large number of conformational substates [19] 
arranged in a hierarchy [20], even for a relatively simple protein like myoglobin. By explor-
ing ligand rebinding and protein dynamics over wide ranges of temperature [19, 21], pres-
sure [22], viscosity [19, 23, 24], and pH [25], his lab characterized quantitatively both the 
thermodynamics of the protein-solvent system at equilibrium [26], i.e., the relative popula-
tions of conformational substates, and the kinetics of transitions among the substates [21].

After discussing our simulation results, future avenues of study are outlined. We antici-
pate that properties of the peptide-solvent system such as those highlighted here, and others 
computed from statistical ensembles in physics-based simulations, will improve our ability 
to design AMPs by machine learning.
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2 � Methods

The peptide sequences are GIKFFLKKLKKHI (SP4) and RWIRWVWRKKLR (SP15), 
with charged N- and amidated C- termini and all residues in the L- configuration. Both 
peptides are highly cationic, as K+ and R+ were protonated and H was assumed to be 
deprotonated in both the aqueous and non-aqueous environments.

In the SCPISM, the electrostatic contribution to the effective energy of the system (here, 
a peptide immersed in a solvent s) is described by two terms, a sum over interatomic inter-
actions and a sum over atomic self-energies, in the form [27, 28]

where N  is the number of atoms, rij is the distance between atoms i and j, and qi and Ri 
are the charge and effective radius of atom i. The function D(x; r) is sigmoidal in x, and r 
denotes the dependence of D on the conformation of the system. This dependence is intro-
duced through a parameter α, which determines the rate of increase of D with x. From a 
physical standpoint, α contains information on the volume, polarity, and polarizability of 
the liquid molecules and depends on external control parameters, such as temperature [27]. 
If x is the distance r from a central charge q , then D is given by [29]

where k ≡ (εs − 1)/2. So, D increases from unity at small distances to the bulk dielectric 
constant at large distances. For short peptides, the reduction in screening due to solvent 
exclusion by neighboring solute atoms is small [27, 28]. Here, the parameter quantifying 
an exponential distance dependence of this effect [28] was taken to be 20 Å for both the 
interaction and self-energy terms.

An atom’s effective radius in the solvated protein is taken to be the weighted aver-
age of its radius in bulk water, Rw,i , and its radius in a bulk protein environment, Rp,i , 
i.e., Rs,i = �iRw,i +

(

1 − �i

)

Rp,i , where �i is the fractional solvent-accessible surface area 
(SASA) of the atom [27, 30]. The nonpolar effects of solvation (cavity formation) are 
approximated for an aqueous solvent as Gnp = a +

∑

i�iSASAi , where a and � are posi-
tive parameters. Seeking the simplest description of the continuum solvent, the same 
atomic surface tension, 5.2 cal/mol/Å2, was used here for all atoms to estimate the non-
polar free energy of solvation, and the approximation Gnp ∼ 0 was used for octanol. 
Parameters used in approximating SASAi [31] were taken from the same or a similar 
atom type in the CHARMM22 force field without modification. The additional � tor-
sion angle employed previously [31] to modify the protein force field was omitted here.

The total energy in the SCPISM is thus Es
SCP

= Es
elec

+ Gnp , with empirical adjustments 
to account for the effects of liquid-structure forces on H-bond interactions [28, 32]. A 
correction to the Lennard-Jones term has also been introduced to implicitly account for 
the effects of the solvent dispersion forces [33]. The SCPISM is parameterized based on 
experimental hydration energies of amino acid side-chain analogs [27] and results from 
MD simulations of the potentials of mean force between amino acid side-chain interactions 
in water [28]. For the structure calculations performed in this paper, the model was simpli-
fied by removing the H-bond and van der Waals corrections and reparametrized based on 
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structure-prediction calculations of the trp-zip 2 [34] and trp-cage [35] peptides with the 
CHARMM36 force field [36, 37], as described [31].

In the derivation of Eq.  1, the energy is zero for the system composed of the pre-
formed solvent and all the protein atoms in the vacuum, at infinite separation from one 
another and the solvent [27, 38]. Therefore, it is possible to obtain the vacuum-to-water 
transfer energy (hydration) ΔEh = Ew

SCP
− E0

SCP
 and the water-to-octanol transfer energy 

ΔEow = Eo
SCP

− Ew
SCP

 =  − RT log P, where P is the partition coefficient. Both quantities can 
be calculated from a peptide conformational ensemble, or for a single structure, as obtained 
with Ew

SCP
 and Eo

SCP
 in each solvent.

In general, the charge of the peptide can change due to changes in the pH of the envi-
ronment or from local pKa shifts of titratable groups at a fixed pH due to conformational 
changes. Charges can be calculated self-consistently in the context of the SCPISM using a 
variational approach [39, 40]. Here, all charges were held constant.

Replica-exchange [41, 42] Langevin dynamic simulations were performed, as described 
previously [31], using 24 replicas for trp-zip 2 and trp-cage (during parameterization) and 
22 replicas for SP4 and SP15. Temperatures ranged from the experimentally relevant tem-
perature to about 1470 K. Replicas were simulated at very high temperatures to promote 
the crossing of energy barriers separating conformational substates; the analysis was per-
formed at the lowest (experimental) temperature. Simulations included 996,000 replica-
exchange steps, each involving 100 steps of Langevin dynamics followed by swaps being 
considered between adjacent temperatures. A collision frequency of 2  ps−1 was used for  
all non-hydrogen atoms. Electrostatic interactions were shifted to zero at 10 Å, and Lennard– 
Jones interactions were switched off from 8 to 10 Å [43]. The SHAKE algorithm was used 
for bonds involving hydrogen atoms. The integration time step was 1.5 fs for temperatures 
below 700 K and 1.0 fs for higher temperatures. The first and last residues were excluded 
when calculating root-mean-square deviation (rmsd).

Nine screening parameters in the SCPISM, the α values in Eq. 2, were varied between a 
minimum value of 0.1 Å−1 and a maximum of 7.0 Å−1 to simultaneously favor native-like 
conformations of the peptides trp-zip 2 and trp-cage. As before [31], low energy confor-
mations sampled in simulations initiated from both extended and NMR-determined con-
formations were collected for different parameterizations and used to bias the parameters 
iteratively. Atoms were again classified as being part of a charged group (q), a backbone 
hydrogen-bonding group (b), or any other neutral group (n). For electrostatic interactions, 
the combination rule sometimes used, αij = (αi αj)1/2, was relaxed. The iterative refinement 
resulted in the following three self-energy α values (in Å−1), αq = 0.1, αb = 6.23, αn = 6.36, 
and six interaction-energy values, αqq = 6.98, αbb = 0.48, αnn = 0.55, αqb = 5.24, αqn = 1.57, 
αbn = 6.59. The folding simulations of trp-zip 2 and trp-cage performed using these refined 
parameters are depicted in the Supplementary Information, Fig. S1. These parameters were 
then used to simulate SP4 and SP15 in water. To approximate an octanol environment, all 
nine screening parameters were set to 0.1 Å−1.

Atomistic dynamics simulations were performed to assess the stability of the structures  
predicted with the new SCPISM parameterization in the corresponding solvents. The simu-
lations were carried out in the NPT ensemble, at 37 ºC and 1 atm, in a cubic cell with peri- 
odic boundary conditions ( PBC) and particle-mesh Ewald (PME) summation, using the all-atom 
representation of the CHARMM36 force field. Bonds to hydrogen atoms were constrained with  
the SHAKE algorithm, and a 2-fs time-step was used to integrate the equations of motion. 
The pressure was maintained with the Langevin piston method; the mass and collision fre-
quency were set at 400 amu and 20 ps−1. The temperature was maintained with the Hoover 
thermostat, using a mass of 103 kcal  mol−1ps2. The length of the cube’s sides was initially  
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set at ∼9.3  nm and filled with ~ 27,000 TIP3P water or 2400 1-octanol molecules, yield-
ing average densities of ∼0.993 g∕cm3 and ∼0.815 g∕cm3, respectively, after equilibration.  
Six or seven Cl− were added to neutralize SP4 and SP15, respectively, in both water and 
octanol, whereas 74 Na+ and 74 Cl− ions were used for the ~ 150-mM NaCl aqueous solu-
tions. All the ions were randomly distributed in the solvent phase after the peptides were  
solvated and the overlapping solvent molecules removed. An initial 4-ns dynamic phase  
was performed while keeping the peptide atoms fixed to let the solvent molecules and ions 
adjust to the peptide’s electric field. A snapshot at the end of this phase was taken as the  
initial configuration for the subsequent simulations of the corresponding systems. The  
constraints were then removed, and after heating and equilibration, 15-ns MD simulations 
were conducted for each peptide. The last 12 ns were analyzed.

Two anionic (POPA, POPG) and two zwitterionic (POPC, POPE) phospholipid bilayers 
were built as models for bacterial and mammalian cell membranes. Each membrane con-
sisted initially of a square slab with a side length of 12 nm and a width of 5 nm, containing  
324 lipid molecules per leaflet, with surfaces parallel to the (x, y) plane and centered at 
z = 0. The membranes were then immersed in a cubic box with a side length of 12 nm filled  
with TIP3P water molecules, and potassium ions were added to neutralize the total charge  
of POPA and POPG. PME summations were used and tetragonal (PBC) were applied so 
that the (x, y) and z dimensions were free to adjust independently; a harmonic restraint 
with a force constant of 0.1 kcal mol–1 Å–2 was applied in the (x, y) plane to prevent the 
lipids’ heavy atoms from moving outside the [–6.25, + 6.25] nm range in each direc-
tion. All other simulation parameters were as described above for the peptide simula-
tions. After heating and equilibration at 35 ºC and 1 atm, the simulations were extended 
for 4 ns to obtain the structures used in the peptide-membrane multiscaling simulations. 
Simulated-annealing MC simulations [44] were performed for each peptide conforma-
tion in the presence of each membrane. The peptides were treated as rigid bodies; so, the 
conformational ensemble obtained at the lowest temperature (here, 35 ºC) represents first-
encounter modes, i.e., the likely distribution before any relaxation occurs. We used the  
CHARMM force field for the peptides and membranes, and the original SCP model [27, 
32] was used to account for the solvent effects. The structure of the peptides and the corre-
sponding effects of the solvent were adapted on the fly using a multiscaling algorithm [45]. 
The temperature was lowered in ten steps through a logarithmic schedule staring at 726  
ºC; 2 × 105 trial moves were sampled per temperature, each consisting of either translation 
(one-third of the moves; restricted to < 2-nm center-of-mass displacements), rotation (one-
third of the moves; restricted to < 180º around randomly chosen axes through the peptide’s 
center of mass), or roto-translation (one-third; < 2 nm and < 180º) taken from homogeneous 
distributions. Simulations were performed inside a rigid sphere of 11-nm diameter cen-
tered on the membrane to minimize artifacts introduced by the lipids at the slab’s edges; no  
corrections were introduced to the a priori probability due to the sphere potential.

3 � Results

For SP4 and SP15, the first 96,000 replica-exchange steps simulated were ignored, and 
9000 structures were saved for analysis, one every 100 steps, and clustered as described 
previously [31]. The clustering reflects the conformations sampled appreciably for the two 
AMPs simulated in the two continuum solvents (Supplementary Information, Figs.  S2-
S5). The simulations produced several conformational substates, or families, in water and 
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octanol; each family is represented by the cluster’s centroid, or hub, as shown in Fig. 1. 
Both peptides are more disordered in water, with ~ 50% of the population unstructured (i.e., 
many families, each with small population) and the rest adopting local secondary structure, 
mainly helical. In contrast, only 20% of the population of SP4 is unstructured in octanol; 
the disorder of SP15 is negligible. Note that different families may have similar physico-
chemical characteristics, as clusters can be somewhat similar, e.g., clusters 3 and 5 for SP4 
in water (Fig. S2). The enhanced mobility of both peptides in the aqueous environment, 
approximated here as a continuum, is consistent with the increased fluctuations seen in 
explicit-water simulations of other small proteins, e.g., myoglobin [46, 47].

None of the structures in octanol shows traces of secondary structure, and each seems 
to favor a cyclic-like conformation where the N-terminus (charged in these models) plays a 
role in stabilizing the hubs. It is important to note that the SCPISM parameters for octanol 
have not been optimized; so, these results are tentative and intended to illustrate. How-
ever, the absence of helical structure in octanol is not unreasonable since such a fold would 
expose the charged side chains, which are distributed along the entire sequence, to the  
low-permittivity solvent, which is energetically unfavorable. Although the  OH group of 
octanol could hydrogen-bond to the side chains, reducing the electrostatic penalty, such 
interactions would be absent inside a membrane.

Molecular dynamic simulations were carried out in explicit solvents to probe the struc-
tural stability of the predicted conformations (cf. Methods). The main hub in water was 
solvated both in pure water (electrically neutral) and in an aqueous solution (150  mM 
of NaCl); the main hub in octanol was immersed in pure 1-octanol (electroneutral). The 
structures remained stable, undergoing the expected fluctuations about the predicted fold 
(Fig. 2). Ions can participate in stabilizing some of the side chains, both in solution and 
in electrically neutral water. Despite the lower permittivity of octanol, which promotes 
side-chain–backbone H-bonds due to stronger electrostatics, the OH groups compete for 
H-bonding as well, forcing some of the side chains in octanol to become solvent exposed 
during the dynamics (not shown), a situation less likely to occur in a lipid membrane, 
unless the peptide forms H-bonds with the head groups. Although gratifying, these obser-
vations do not guarantee that the structures are at a global free-energy minimum, as they 
might be kinetically trapped, especially in the much more viscous 1-octanol.

The 9000 structures analyzed for each of the four continuum-solvent simulations were 
characterized by the peptide’s radius of gyration (Fig. 3a) and total solvent accessible sur-
face area (Fig. 3b). Both quantities show a broader range of structures was sampled in the 

Fig. 1   Main conformational families of SP4 (a) and SP15 (b) in water (upper row) and octanol (lower), as 
predicted at 37 ºC from replica-exchange simulations, using all-atom representations of the peptides and 
continuum descriptions of the solvents. f  and f ′ represent the populations of the corresponding confor-
mational families in water and octanol. Both peptides are ~ 50% disordered in water, whereas only ~ 20% 
and < 5% are disordered in octanol. Circles indicate N-termini
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aqueous environment than in the less polar solvent, consistent with a long history of experi-
ments and explicit-water simulations that show protein hydration promotes protein motion. 
In particular, SP4 in an aqueous solvent was seen to adopt especially small values of the 
radius of gyration (Fig. 3a, solid black line), even though SP4 is one residue longer than 
SP15. Similarly, the changes in surface exposure of charged, hydrophilic, and hydropho-
bic groups upon the change in environment are all greater for SP4 (Fig. 3c) than for SP15 
(Fig. 3d). The simulations show that SP4 is intrinsically more flexible than SP15 and, thus, 
better able to adapt structurally to changes in the polarity of its environment. This greater 
sensitivity to environment might account for the observation that SP4 disrupts the structure 
of bacterial membranes at concentrations close to its MIC, unlike SP15.

4 � Discussion

Recent computational studies have led to a series of short (< 15 residues) AMPs, some 
with MICs consistent with potent antibiotics [16]. The basis for these studies has been an 
ML algorithm trained with a few hundred known AMPs obtained from the DBAASP [17]. 
The input data consisted of a series of physicochemical features of the peptides: hydro-
phobic moment, hydrophobicity, charge density, isoelectric point, membrane-penetration 
depth, angle with respect to the membrane surface, propensity for disorder, and propensity 
to aggregate. These properties may indeed determine a peptide’s potential to perturb the 
membrane structure. However, the formal calculation of these quantities requires a priori 
knowledge of the peptide structure. Unfortunately, the structures of most AMPs are not 
known; so, the authors assumed that all the AMPs adopted α-helical conformations. This  
assumption was used during training and inverse design. The method produced a set of AMPs  
with low MIC and high therapeutic index.

Fig. 2   Snapshots from 15-ns molecular dynamics simulations of the conformations with the highest popu-
lation in Fig. 1. The simulations were performed at 37 ºC and 1 atm, with all-atom representations of the 
peptides and solvents. Circles indicate N-termini
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Fig. 3   Normalized histograms 
calculated from simulations of 
SP4 and SP15, initiated from 
extended conformations, in 
water-like (black) and octanol-
like (gray) continuum solvents. 
Results are plotted for the 
radius of gyration (a), solvent-
accessible surface area (b), and 
the fraction of solvent-accessible 
surface area of atoms in different 
groups for SP4 (c) and SP15 (d). 
In a and b, SP4 results are solid 
and SP15 results are dashed. 
In c and d, results for atoms in 
positively charged, hydrophobic, 
and hydrophilic groups are solid, 
dashed, and dotted, respectively
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The structure of a peptide depends on the medium in which it is immersed, both the 
solvent composition (e.g., water vs. lipid) and conditions, e.g., pH and salt concentration, 
all of which change as a peptide migrates between environments. While temperature and 
pressure dramatically change the free energy landscape, the focus here is on physiological 
values. Peptides are generally flexible in solution, coexisting in multiple conformational 
families with interconverting populations. A given family may select a particular protein 
or bind preferentially to one site among many in a protein [48, 49]; likewise, a family may 
recognize and associate preferentially to a particular membrane. Experimental detection 
and characterization of peptide conformations in aqueous media are challenging. NMR 
spectroscopy can produce one (most common) or more distinct conformations with atomic 
resolution, but assumptions need to be made on their populations and kinetics [50, 51]. The 
problem is equally challenging in a membrane, but some structural insight can be obtained 
using oriented CD [52]. Available data show that linear peptides can adopt a variety of 
conformations, including α-helix, β-sheet, or a mix of both, or be intrinsically disordered 
or in a random-coil state [11]. Experimental data are extremely valuable when training a 
machine, and the use of octanol as a general membrane-like medium might provide physi-
cally meaningful information while avoiding the experimental challenges posed by real 
membranes.

The alternative to experiments is prediction through computer simulations. (The “inter-
mediate” solution by homology, commonly used in modeling proteins, or the more recent 
and accurate ML method based on artificial neural networks [53], are not reliable given 
the sensitivity of peptide conformations to local changes in the sequence, the scarcity of 
experimentally resolved structures in solution, and the likely presence of multiple conform-
ers.) However, several conceptual and practical questions arise, mainly on the choice of the 
environment for which structures are to be predicted. For example, upon approaching and 
binding to a membrane, the peptide may or may not penetrate it. As the carpet model [10] 
suggests, peptides could accumulate on the membrane surface and damage its structure 
through various mechanisms, likely dependent on the peptide sequence and chemistry of 
the lipid head groups. In such cases, structure prediction in water is more reasonable. On 
the other hand, the peptide may fully penetrate the membrane, in which case prediction of 
structures in a lipid environment makes more sense. In general, the peptide penetrates the 
membrane only partially, in a process governed by a complex interplay of forces. Thus, the  
problem becomes one of predicting structures of a peptide in the water/membrane sys-
tem and somehow incorporating physicochemical features from all the structures to train  
the machine. Computer simulations under these conditions become impractical because 
multiple systems need to be simulated to have enough training data for the algorithm to 
learn.

One or more of the structures predicted in water may have the potential to bind either 
the anionic or zwitterionic membranes, or both, and perturb their structure. This can be 
seen from several characteristics known to affect biomolecular interactions, binding, and 
stabilization, such as surface electrostatics, the distribution of polar groups, the ratio of 
polar/nonpolar surface areas, and the number of donors and acceptors on the peptide that 
are solvent exposed and ready to engage the lipid head groups, provided the chemical com-
position of the head groups favors the interaction (Fig. S6 and Fig. 5). It will be important 
to include such membrane features in training any ML algorithm. First-encounter bind-
ing modes between a peptide and a membrane can be calculated by Monte Carlo simu-
lations. These modes can then be used as the starting configurations for subsequent MD 
simulations to investigate the sequence of events that lead to membrane-structure disrup-
tion in a particular peptide/membrane system. To expedite the systematic calculation of 
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lead compounds, a computationally efficient method is critical. A method was proposed 
previously [45] based on an adaptive multiscaling algorithm that treats the interacting part-
ners at different levels of resolution, speeding up computation significantly. Binding is con-
trolled by the structural granularity of the membrane surfaces (Fig. 4, left panel), akin to 
binding pockets on protein surfaces, and by the chemical characteristics of the head groups 
(Fig.  4, right). Their relevance as features in any physics-based ML approach is appar-
ent. Surface granularity and chemical composition are important in protein–ligand interac-
tions, as well, but the membrane surface is much more fluid than a protein, producing a 
more complex conformational landscape with more substates. The noise introduced by this 
highly mobile membrane/liquid interface may be enough to trigger conformational changes 
in an approaching peptide or protein (e.g., through stochastic resonance [54, 55] coupled to 
one of the peptide’s slow harmonic motions), aside from other, more direct physical effects 
of highly charged interfaces on the peptide’s structure, kinetics, and dynamics [56]. The 
membrane can also be very highly charged, which creates a layer of bound counterions 
(Stern layer) that must be locally disrupted for a cationic peptide to bind (Fig. S6). Figure 5 
shows the first-encounter binding modes of the main conformational family of SP4 and 
SP15 to anionic and zwitterionic membranes. Because the predicted peptide conformations 
possess similar spatial distributions of charged and hydrophobic moieties, it is not surpris-
ing that they tend to recognize similar regions on the membrane surface, suggesting the 
presence of “weak spots” the peptides might use to penetrate it. The head groups determine 
the mode of binding, and a given peptide adopts different orientations in the presence of 
different membranes, as hydrophilic and hydrophobic moieties associate with complemen-
tary groups in the membrane. For example, the negatively charged phosphate groups in 
POPA attract the Lys+ and Arg+ side chains, while the methyl groups in POPC attract non-
polar residues, flipping the peptide such that the polar/charged residues remain hydrated.

Fig. 4   Physicochemical features of bacterial (upper row; POPA and POPG) and mammalian (lower; POPC 
and POPE) model cell membranes. Left panel: solvent-contact surfaces of equilibrated structures at 35 ºC 
and 1 atm, showing different degrees of roughness determined by the head groups’ interactions with one 
another and with water and ions (ions not shown; cf. Fig. S6). Right panel: same snapshots, with the surface 
removed to reveal the atomic arrangement of the head group (van der Waals representation; P: orange, O: 
red, H: white, C: gray, N: blue). The local surface topography and the atomic composition within the cracks 
and crevices select the peptide and the particular conformational family that can bind to the membrane
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This multiscaling method was used previously to obtain the binding modes and affini-
ties of ultrasmall nanoparticles (protein mimics) for anionic and zwitterionic phospholipid 
membranes and showed how selectivity for a membrane can be achieved by manipulat-
ing the particle design [57]. An ML algorithm was used to optimize the inverse design 
[58]. Similar ideas can be applied to linear peptides: physicochemical features can first be 
inferred from desirable properties, e.g., MIC, and amino acid sequences can then be opti-
mized to reproduce the features. Many AMPs have cyclic topology, naturally linked by 
disulfide bridges. Using the features as the basis for a pharmacophore should allow the 
design of cyclic AMPs as well.

We intend to build on this work by developing a model to design AMPs using phys-
icochemical peptide features that can be quantified in different environments, e.g., water 
and octanol, along with those characterizing various membranes. Conformation-dependent 
peptide features include all those considered previously [16] in the derivation of SP4 and 
SP15 and others we deem critical, such as polar and nonpolar surface areas, or the number 
of solvent-exposed donor and acceptor atoms. Membrane features would include the ratio 
of lipid types (since binary and ternary mixtures are not uncommon), size and charge of 
functional groups, number of potential proton donors and acceptors, and possibly others.

The calculation of such features is straightforward once the peptide conformations are 
identified in each solvent. To predict the conformational families for SP4 and SP15, we 
have used replica-exchange Langevin dynamics and a computationally efficient forcefield, 
with an atomistic representation of the peptide and a continuum representation of the 
solvent. The continuum model was proposed previously [27, 28, 30] and used in several 
applications, including the structure prediction of peptides up to 35-residues long and the 
dependence of their conformations on the solvent conditions [28, 31, 59]. In the SCPISM, 

Fig. 5   Left: Binding of SP4 (red) and SP15 (green) conformational families obtained from multiscaling 
simulations at 35 ºC. The representative member of each conformational family was simulated separately, 
showing that the peptides tend to recognize specific crevices that form on the membrane surface. Right: 
details of the interactions of SP4, second family (cf. Figure  1a), with POPA (upper) and POPC (lower), 
showing the binding modes induced by the head groups: K3, K8, K10, and K11 interact strongly with the 
phosphate groups of POPA, whereas I2, F5, L6, L9, and I13 interact strongly with the methyl groups of 
POPC
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the electrostatic effects are based on elementary notions of dielectrics [27, 29], making 
apparent the physics involved (e.g., polarity, polarizability, molecular volume, and tem-
perature). It is thus possible to use the model in any solvents for which the assumptions of 
a continuum make physical sense, e.g., small molecular volumes and fast rotational and 
translational diffusions; other than water, few solvents qualify. Although these assump-
tions do not hold for lipids in a membrane, where steric forces due to the oriented hydro-
carbon chains can be strong, it is possible to capture implicitly the effects of removing 
water from the space occupied by the lipids [28]. These water-exclusion effects are criti-
cal, strengthening the solute–solute electrostatic interactions, including their contributions 
to H-bonds. Other essential solvent-mediated effects are hydrophobicity, dispersion forces, 
and H-bonds, all incorporated empirically; steric effects are typically included through 
Langevin dynamics.

5 � Conclusions

Our simulations of two linear antimicrobial peptides, SP4 and SP15, show that for both 
peptides, the predominant family of structures in octanol is more than twice the size of the 
largest family in water. The aqueous environment produces an energy landscape more eas-
ily explored, enabling transitions among conformational substates. We observed that SP4 
undergoes a greater conformational change upon moving from an aqueous environment to 
one far less polar. The fractional solvent accessible surface areas of charged, hydrophilic, 
and hydrophobic groups change more dramatically for SP4 than SP15. Assuming that the 
peptides enter the membrane, this enhanced rearrangement of SP4 may contribute to an 
increase in the permeability of the bacterial membrane at relatively low concentration, 
close to its measured MIC. This process may be general for linear AMPs that act through 
this particular mechanism of action. Clearly, a mechanistic understanding of the structural 
perturbation of bacterial membranes, but not others, would require a detailed simulation 
approach. As illustrated here, fully atomistic simulations of peptides in the presence of dif-
ferent lipid bilayers are needed to address this question. Nonetheless, differences in envi-
ronmental dependences obtained with efficient, continuum treatments of water and octanol 
phases may be sufficiently realistic to inform and improve predictions by machine learning.
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