Skip to main content

Advertisement

Log in

Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Viruses can be described as biological objects composed mainly of two parts: a stiff protein shell called a capsid, and a core inside the capsid containing the nucleic acid and liquid. In many double-stranded DNA bacterial viruses (aka phage), the volume ratio between the liquid and the encapsidated DNA is approximately 1:1. Due to the dominant DNA hydration force, water strongly mediates the interaction between the packaged DNA strands. Therefore, water that hydrates the DNA plays an important role in nanoindentation experiments of DNA-filled viral capsids. Nanoindentation measurements allow us to gain further insight into the nature of the hydration and electrostatic interactions between the DNA strands. With this motivation, a continuum-based numerical model for simulating the nanoindentation response of DNA-filled viral capsids is proposed here. The viral capsid is modeled as large- strain isotropic hyper-elastic material, whereas porous elasticity is adopted to capture the mechanical response of the filled viral capsid. The voids inside the viral capsid are assumed to be filled with liquid, which is modeled as a homogenous incompressible fluid. The motion of a fluid flowing through the porous medium upon capsid indentation is modeled using Darcy’s law, describing the flow of fluid through a porous medium. The nanoindentation response is simulated using three-dimensional finite element analysis and the simulations are performed using the finite element code Abaqus. Force-indentation curves for empty, partially and completely DNA-filled capsids are directly compared to the experimental data for bacteriophage λ. Material parameters such as Young’s modulus, shear modulus, and bulk modulus are determined by comparing computed force-indentation curves to the data from the atomic force microscopy (AFM) experiments. Predictions are made for pressure distribution inside the capsid, as well as the fluid volume ratio variation during the indentation test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ivanovska, I.L., de Pablo, P.J., Ibarra, B., Sgalari, G., MacKintosh, F.C., Carrascosa, J.L., Schmidt, C.F., Wuite, G.J.: Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl. Acad. Sci. U.S.A. 101(20), 7600–7605 (2004)

    Article  ADS  Google Scholar 

  2. Ivanovska, I.L., Wuite, G.J., Jönsson, B., Evilevitch, A: Internal DNA pressure modifies stability of WT phage. Proc. Natl. Acad. Sci. U.S.A. 104, 9603–9608 (2007)

    Article  ADS  Google Scholar 

  3. Michel, J.P., Ivanovska,I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. U.S.A. 103(16), 6184–6189 (2006)

    Article  ADS  Google Scholar 

  4. Carrasco, C., Carreira, A., Schaap, I.A.T., Serena, P.A., Gomez-Herrero, J., Mateu, M.G., Pablo, P.J.: DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl. Acad. Sci. U.S.A. 103(37), 13706–13711 (2006)

    Article  ADS  Google Scholar 

  5. Kol, N., Gladnikoff, M., Barlam, D., Shneck, R.Z., Rein, A., Rousso, I.: Mechanical properties of murine leukemia virus particles: effects and maturation. Biophys. J. 91(2), 767–774 (2006)

    Article  ADS  Google Scholar 

  6. Kol, N., Shi, Y., Tsvitov, M., Barlam, D., Shneck, R.Z., Kay, M.S., Rousso, I.: A stiffness switch in human immunodeficiency virus. Biophys. J. 92(5), 1777–1783 (2007)

    Article  ADS  Google Scholar 

  7. Roos, W.H., Radtke, K., Kniesmeijer, E., Geertsema, H., Sodeik, B., Wuite, G.J.L.: Scaffold expulsion and genome packaging trigger stabilization of Herpes Simplex Virus capsids. Proc. Natl. Acad. Sci. U.S.A. 106, 9673–9678 (2009)

    Article  ADS  Google Scholar 

  8. Roos, W.H., Geertsema, H., May, E.R., Brooks, C.L., Johnson, J.E., Wuite, G.J.L.: Mechanics of bacteriophage maturation. Proc. Natl. Acad. Sci. U.S.A. 109, 2342–2347 (2012)

    Article  ADS  Google Scholar 

  9. Zandi, R., Reguera, D., Bruinsma, R.F., Gelbart, W.M., Rudnick, J.: Origin of icosahedral symmetry in viruses. Proc. Natl. Acad. Sci. U.S.A. 101(15), 556–560 (2004)

    Google Scholar 

  10. Zandi, R., Reguera, D.: Mechanical properties of viral capsids. Phys. Rev. E 72(2), Art. No. 021917 Part 1 (2005)

  11. Ahadi, A., Colomo, J., Evilevitch, A.: Three-dimensional simulation of nanoindentation response of viral capsids. Shape and size effects. J. Phys. Chem. B 113(11), 3370–3378 (2009)

    Article  Google Scholar 

  12. Evilevitch, A., Lavelle, L., Knobler, C.M., Raspaud, E., Gelbart, W.M.: Osmotic pressure inhibition of DNA ejection from phage. Proc. Natl. Acad. Sci. U.S.A. 100, 9292–9295 (2003)

    Article  ADS  Google Scholar 

  13. Nurmemmedov, E., Castelnovo, M., Medina, E., Catalano, C.E., Evilevitch, A.: Challenging packaging limits and infectivity of phage lambda. J. Mol. Biol. (2011)

  14. Lidmar, J., Mirny, L., Nelson, D.R.: Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68(5), Art. No. 051910 Part 1 (2003)

  15. Widom, M., Lidmar, J., Nelson, D.R.: Soft modes near the buckling transition of icosahedral shells. Phys. Rev. E 76(3), Art. No. 031911 Part 1 (2007)

  16. Nguyen, T.T., Bruinsma, R.F., Gelbart, W.M.: Elasticity theory and shape transitions of viral shells. Phys. Rev. E 72(5), Art. No. 051923 Part 1 (2005)

  17. Vliegenthart, G.A., Gompper, G.: Mechanical deformation of spherical viruses with icosahedral symmetry. Biophys. J. 91(3), 834–841 (2006)

    Article  ADS  Google Scholar 

  18. Arkhipov, A., Roos, W.H., Wuite, G.J.L., Schulten, K.: Elucidating the mechanism behind irreversible deformation of viral capsids. Biophys. J. 97(7), 2061–2069 (2009)

    Article  ADS  Google Scholar 

  19. Zink, M., Grubmuller, H.: Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys. J. 97(4), 1350–1363 (2009)

    Article  Google Scholar 

  20. Cieplak, M., Robbins, M.O.: Nanoindentation of virus capsids in a molecular model. J. Chem. Phys. 132(1), Art. No. 015101 (2010)

    Google Scholar 

  21. May, E.R., Brooks, C.L.: Determination of viral capsid elastic properties from equilibrium thermal fluctuations. Phys. Rev. Lett. 106(18), Art. No. 188101 (2011)

    Google Scholar 

  22. May, E.R., Aggarwal, A., Klug, W.S., Brooks, C.L.: Viral capsid equilibrium dynamics reveals nonuniform elastic properties. Biophys. J. 100(11), L59–L61 (2011)

    Article  Google Scholar 

  23. Rau, D.C., Lee, B., Parsegian, V.A.: Measurement of the repulsive force between poly-electrolyte molecules in ionic solution - hydration forces between parallel DNA double helices. Proc. Natl Acad. Sci. U.S.A. 81, 2621–2625 (1984)

    Article  ADS  Google Scholar 

  24. Parsegian, V.A., Rand, R.P., Fuller, N.L., Rau, D.C.: Osmotic stress for the direct measurement of intermolecular forces. Methods Enzymol. 127, 400–416 (1986)

    Article  Google Scholar 

  25. Qiu, X.Y., Rau, D.C., Parsegian, V.A., Fang, L.T., Knobler, C.M., Gelbart, W.M.: Salt-dependent DNA-DNA spacings in intact bacteriophage lambda reflect relative importance of DNA self-repulsion and bending energies. Phys. Rev. Lett. 106(2), Art. No. 028102 (2011)

    Google Scholar 

  26. Gibbons, M.M., Klug, W.S.: Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75(3), Art. No. 031901 Part 1 (2007)

  27. Coussy, O.: Poromechanics. John Wiley & Sons (2004)

  28. Wood, D.M: Critical State Soil Mechanics. Cambridge University Press (1990)

  29. Lander, G., Evilevitch, A., Jeembaeva, M., Potter, C.S., Carragher, B., Johnson, J.E.: Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by Cryo-EM. Structure 16, 1399–1406 (2007)

    Article  Google Scholar 

  30. Ahadi, A., Krenk, S.: Characteristic state plasticity for granular materials: part II: model calibration and results. Int. J. Solids Struct. 37(43), 6361–6380 (2000)

    Article  MATH  Google Scholar 

  31. SIMULIA: Abaqus 6.11 documentation, Abaqus Theory Manual

  32. Mathai, J.C., Tristram-Nagle, S., Nagle, J.F., Zeidel, M.L.: Structural determinants of water permeability through the Lipid membrane. J. Gen. Physiol. 131(1), 69–76 (2008)

    Article  Google Scholar 

  33. Ahadi, A.: Determination of hyperelastic properties of viral capsids using finite element calculation and nanoindentation. Journal of Nanoengineering and Nanosystems 225(43), 75–84 (2011)

    Article  Google Scholar 

  34. Koester, S., Evilevitch A, Jeembaeva, M., Weitz, D.A.: Influence of internal capsid pressure on viral infection by phage λ. Biophys. J. 97, 1525–1529 (2009)

    Article  ADS  Google Scholar 

  35. De Paepe, M., Taddei, F.: Viruses’ life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages. PLoS Biol. 4, 1248–1256 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aylin Ahadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahadi, A., Johansson, D. & Evilevitch, A. Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids. J Biol Phys 39, 183–199 (2013). https://doi.org/10.1007/s10867-013-9297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-013-9297-9

Keywords

Navigation