Skip to main content
Log in

ZFC/FC of oriented magnetic material in the Solenopsis interrupta head with antennae: Characterization by FMR and SQUID

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Ferromagnetic resonance and SQUID magnetometry have been used to study magnetic material in the head with antennae, thorax, and abdomen of Solenopsis interrupta ants. The temperature dependence of the head with antennae using both techniques was measured. Room-temperature spectra and saturation magnetization were used to compare the magnetic material amount in the ant body parts. Both techniques show that the highest magnetic material fraction is in the head with antennae. The ordering temperature is observed at 100 ± 20 K for the ferromagnetic resonance spectra HF component. The estimated magnetic anisotropy constant K and g-values at room temperature are in good agreement with magnetite, supporting this material as the main magnetic particle constituent in the Solenopsis interrupta head with antenna. Particle diameters of 26 ± 2 nm and smaller than 14 nm were estimated. This work suggests that the head with antenna of the Solenopsis interrupta ant contains organized magnetic material and points to it as a good candidate as a magnetic sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wiltschko, W., Wiltschko, R.: Magnetic Orientation in Animals. Springer-Verlag, Berlin (1995)

    Book  Google Scholar 

  2. Lohmann, K.J., Johnsen, S.: The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci. 23, 153–159 (2000)

    Article  Google Scholar 

  3. Wiltschko, W., Wiltschko R.: Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A 191, 675–693 (2005)

    Article  Google Scholar 

  4. Wajnberg, E., Acosta-Avalos, D., Alves, O.C., Oliveira, J.F., Srygley, R.B., Esquivel, D.M.S.: Magnetoreception in eusocial insects: an update. J. Roy. Soc. Interface 7, 143–152 (2010)

    Article  Google Scholar 

  5. Phillips, J.B., Borland, S.C.: Behavioural evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359, 142–144 (1992)

    Article  ADS  Google Scholar 

  6. Vácha, M.: Magnetic orientation in insects. Biologia (Bratislava) 52(5), 629–636 (1997)

    Google Scholar 

  7. Shcherbakov, V.P., Winklhofer, M.: The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals. Eur. Biophys. J. 28, 380–392 (1999)

    Article  Google Scholar 

  8. Lohmann, K.J., Johnsen, S.: The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6, 703–712 (2005)

    Article  Google Scholar 

  9. Esquivel, D.M.S., Acosta-Avalos, D., El-Jaick, L.J., Cunha, A.D.M., Malheiros, M.G., Wajnberg, E., Linhares, M.P.: Evidence for magnetic material in the fire ant Solenopsis sp. by electron paramagnetic resonance measurements. Naturwissenschaften 86, 30–32 (1999)

    Article  ADS  Google Scholar 

  10. Wajnberg, E., Acosta-Avalos, D., El-Jaick, L.J., Abraçado, L.G., Coelho, J.L.A., Bakusis, A.F., Morais, P.C., Esquivel, D.M.S.: Electron paramagnetic resonance study of the migratory ant Pachycondyla marginata abdomens. Biophys. J. 78, 1018–1023 (2000)

    Article  Google Scholar 

  11. El-Jaick, L.J., Acosta-Avalos, D., Esquivel, D.M.S., Wajnberg, E., Linhares, M.P.: Electron paramagnetic resonance study of honeybee Apis melifera abdomens. Eur. Biophys. J. 29, 579–586 (2001)

    Article  Google Scholar 

  12. Wajnberg, E., Cernicchiaro, G., Esquivel, D.M.S.: Antennae: the strongest magnetic part of the migratory ant. Biometals 168, 246–251 (2004)

    Google Scholar 

  13. Abraçado, L.G., Esquivel, D.M.S., Alves, O.C., Wajnberg, E.: Magnetic material in head, thorax and abdomen of Solenopsis substituta ants: a ferromagnetic resonance (FMR) study. J. Magn. Res. 175, 306–316 (2005)

    Article  ADS  Google Scholar 

  14. Lucano, M.J., Cernicchiaro, G., Wajnberg, E., Esquivel, D.M.S.: Stingless bee antennae: a magnetic sensory organ? Biometals 19, 295–300 (2006)

    Article  Google Scholar 

  15. Abraçado, L.G., Esquivel, D.M.S., Wajnberg, E.: Oriented magnetic material in head and antennae of Solenopsis interrupta ant. J. Magn. Magn. Mater. 320, e204–e206 (2008)

    Article  Google Scholar 

  16. Abraçado, L.G., Esquivel, D.M.S., Wajnberg, E.: Solenopsis interrupta ant magnetic material: statistical and seasonal studies. Phys. Biol. 6, 046012 (2009)

    Article  Google Scholar 

  17. Gould, J.L., Kirschvink, J.L., Deffeyes, K.S.: Bees have magnetic remanence. Science 201, 1026–1028 (1978)

    Article  ADS  Google Scholar 

  18. Gould, J.L., Kirschvink, J.L., Deffeyes, K.S., Brines, M.L.: Orientation of demagnetized bees. J. Exp. Biol. 86, 1–8 (1980)

    Google Scholar 

  19. Schiff, H., Modulation of spike frequencies by varying the ambient magnetic field and magnetite candidates in bees (Apis mellifera). Comp. Biochem. Physiol. 100, 975–985 (1991)

    Article  Google Scholar 

  20. Hsu, C.-Y., Li, C.-W.: Magnetoreception in honeybees. Science 265, 95–96 (1994)

    Article  ADS  Google Scholar 

  21. Hsu, C.-Y., Ko, F.-Y., Li, C.-W., Fann, K., Lue, J.-T.: Magnetoreception system in honeybees (Apis mellifera). PLoS ONE 2, e395–e406 (2007)

    Article  ADS  Google Scholar 

  22. Kermarrec, A.: Sensitivity to artificial magnetic fields and avoiding reaction in Acromyrmex octospinosus (Reich). Insectes Sociaux 28, 40–46 (1981)

    Article  Google Scholar 

  23. Çamlitepe, Y., Stradling, D.J.: Wood ants orient to magnetic fields. Proc. R. Soc. Lond. B 261, 37–41 (1995)

    Article  ADS  Google Scholar 

  24. Çamlitepe, Y., Aksoy, V., Neslihan, U., Ayse, Y., Becenen, I.: An experimental analysis on the magnetic field sensitivity of the black-meadow ant Formica pratensis Retzius (Hymenoptera: Formicidae). Acta. Biol. Hung. 56, 215–224 (2005)

    Article  Google Scholar 

  25. Jander, R., Jander, U.: The light and magnetic compass of the weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae). Ethology 104, 743–758 (1998)

    Article  Google Scholar 

  26. Banks A.N., Srygley R.B.: Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology 109, 835–846 (2003)

    Article  Google Scholar 

  27. Anderson, J.B., Vander Meer, R.K.: Magnetic orientation in fire ant Solenopsis invicta. Naturwissenschaften 80, 568–570 (1993)

    Article  ADS  Google Scholar 

  28. Oliveira, J.F., Wajnberg, E., Esquivel, D.M.S., Weinkauf, S., Winklhofer, M., Hanzlik, M.: Ant antennae: are they sites for magnetoreception? J. Roy. Soc. Interface 7, 143–152 (2010)

    Article  Google Scholar 

  29. Hölldobler, B., Wilson, E.O.: The Ants. Harvard University Press, Cambridge (1990)

    Google Scholar 

  30. Kopp, R.E., Weiss, B.P., Maloof, A.C., Vali, H., Nash, C.Z., Kirschvink, J.L.: Chains, clumps, and strings: magnetofossil taphonomy with ferromagnetic resonance spectroscopy. Earth Planet. Sci. Lett. 247, 10–25 (2006)

    Article  ADS  Google Scholar 

  31. Abe, K., Mijamoto, Y., Chikazumi, S.: Magnetocrystalline anisotropy of low-temperature phase of magnetite. J. Phys. Soc. Jpn. 41, 1894–1902 (1979)

    Article  ADS  Google Scholar 

  32. Kakol, Z., Honig, J.M.: Influence of deviations from ideal stoichiometry on the anisotropy parameters of magnetite Fe3(1 − δ)O4. Phys. Rev. B 40, 9090–9097 (1989)

    Article  ADS  Google Scholar 

  33. Raiker, Y.L., Stepanov, V.I.; The effect of thermal fluctuations on the FMR line shape in dispersed ferromagnets. Sov. Phys. JETP 75, 764–771 (1992)

    Google Scholar 

  34. Guskos, N., Anagnostakis, E.A., Likodimos, V., Bodziony, T., Typek, J., Maryniak, M., Narkiewicz, U., Kucharewicz, I., Waplak, S.: Ferromagnetic resonance and ac conductivity of a polymer composite of Fe3O4 and Fe3C nanoparticles dispersed in a graphite matrix. J. Appl. Phys. 97, 024304 (2005)

    Article  Google Scholar 

  35. Vonsovskii, S.V.: Ferromagnetic Resonance. Pergamon Press, New York (1966)

    Google Scholar 

  36. Belov, K.P.: Electronic processes in magnetite (or ‘enigmas of magnetite’). Phys. Usp. 36, 380–391 (1993)

    Article  ADS  Google Scholar 

  37. Kumar, D., Narayan, J., Kvit, A.V., Sharma, A.K., Sankar, J.: High coercivity and superparamagnetic behavior of nanocrystalline iron particles in alumina matrix. J. Magn. Magn. Mater. 232, 161–167 (2001)

    Article  ADS  Google Scholar 

  38. Dunlop, D.J.: Hysteresis properties of magnetite and their dependence on particle size: a test of PSD remanence models. J. Geophys. Res. 91, 9569 (1986)

    Article  ADS  Google Scholar 

  39. Roberts, A.P., Cui, Y.L., Verosub, K.L.: Wasp-waisted hysteresis loops: mineral magnetic characteristics and discrimination on components in mixed magnetic systems. J. Geophys. Res. 100, 17909 (1995)

    Article  ADS  Google Scholar 

  40. Bean, C.P.: Hysteresis loops of mixtures of ferromagnetic micropowders. J. Appl. Phys. 26, 1381–1383 (1955)

    Article  ADS  Google Scholar 

  41. Johnsen, S., Lohmann, K.J.: The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6, 703–712 (2005)

    Article  Google Scholar 

  42. Davila, A.F., Winklhofer, M., Shcherbakov, V.P., Petersen, N.: Magnetic pulse affects a putative magnetoreceptor mechanism. Biophys. J. 89, 56–63 (2005)

    Article  Google Scholar 

  43. Fleissner, G., Fleissner, G., Stahl, B., Falkenberg, G.: Iron-mineral-based magnetoreception in birds: the stimulus conducting system. J. Ornithol. 148, S643–S648 (2007)

    Article  Google Scholar 

  44. Kirschvink, J.L., Gould, J.L.: Biogenic magnetite as a basis for magnetic-field detection in animals. Biosystems 13, 181–201 (1981)

    Article  Google Scholar 

  45. Yorke, E.D.: Possible magnetic transducer in birds. J. Theor. Biol. 77, 101–105 (1979)

    Article  Google Scholar 

  46. Davila, A.F., Fleissner, G., Winklhofer, M., Petersen, N.: A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys. Chem. Earth 28, 647–652 (2003)

    Article  Google Scholar 

  47. Gazeau, F., Bacri, J.C., Gendron, F., Perzynski, R., Raikher, Yu.L., Stepanov, V.I., Dubois, E.: Magnetic resonance of ferrite nanoparticles: evidence of surface effects. J. Magn. Magn. Mater. 186, 175–187 (1998)

    Article  ADS  Google Scholar 

  48. Koksharov, Yu.A., Gubin, S.P., Kosobudsky, I.D., Yurkov, G.Yu., Pankratov, D.A., Ponomarenko, L.A., Mikheev, M.G., Beltran, M., Khodorkovsky, Y., Tishin, A.M.: Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles. Phys. Rev. B 63, 012407 (2000)

    Article  Google Scholar 

  49. Berger, R., Bissey, J.C., Kliava, J., Daubric, H., Estournès, C.: Temperature dependence of superparamagnetic resonance of iron oxide nanoparticles. J. Magn. Magn. Mater. 234, 535–544 (2001)

    Article  ADS  Google Scholar 

  50. Pujada, B.R., Sinnecker, E.H.C.P., Rossi, A.M., Guimarães, A.P.: Ferromagnetic resonance studies of cobalt-copper alloys. Phys. Rev. B 64, 184419 (2001)

    Article  ADS  Google Scholar 

  51. Day, R., Fuller, M., Schmidt, V.A.: Hysteresis properties of titanomagnetites: grain size and composition dependence. Phys. Earth Planet. Inter. 13, 260 (1977)

    Article  ADS  Google Scholar 

  52. Tauxe, L., Bertram, H.N., Seberino, C.: Physical interpretation of hysteresis loops: micromagnetic modeling of fine particle magnetite. Geochem. Geophys. Geosyst. 3, 1525 (2002)

    Article  Google Scholar 

  53. Özdemir, O., Dunlop, D.J., Moskowitz, B.M.: Changes in remanence, coercivity and domain state at low temperature in magnetite. Earth Planet. Sci. Lett. 194, 343–358 (2002)

    Article  ADS  Google Scholar 

  54. Goya, G.F., Berquó, T.S., Fonseca, F.C., Morales, M.P.: Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Dr. A. Y. Harada, Museu Paraense Emilio Goeldi, PA, Brasil for S. interrupta identification, Roberto Eizemberg and Leandro Sabagh for help with ant nest collection and maintenance, and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leida G. Abraçado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abraçado, L.G., Esquivel, D.M.S. & Wajnberg, E. ZFC/FC of oriented magnetic material in the Solenopsis interrupta head with antennae: Characterization by FMR and SQUID. J Biol Phys 38, 607–621 (2012). https://doi.org/10.1007/s10867-012-9275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9275-7

Keywords

Navigation