Skip to main content

Advertisement

Log in

Complex formation and turnover of mitochondrial transporters and ion channels

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Mitochondria are responsible for many vital cellular functions in eukaryotic cells, such as ATP production, steroid synthesis and prosthetic group biogenesis. The vital functions of mitochondria are possible due to the compartmental nature of this organelle. Mitochondria form a dynamic network that can exist as a network throughout a cell or as distinct individual structures. Mitochondria are also composed of two membranes, an inner and outer membrane. The inner mitochondrial membrane (IMM) is significantly larger than the outer membrane and must fold upon itself to be contained within the outer mitochondrial membrane (OMM). These folds are known as cristae. Altogether these different membrane compartments specialize in different functions of the mitochondria. The OMM is responsible for passage of small metabolites into and out of the mitochondria while excluding macromolecules. The IMM is a highly selective barrier between the solutes of the cytosol and those within the mitochondrial matrix. Cristae specialize in oxidative phosphorylation. The functions of these membranes are afforded by membrane proteins that are able to transport specific solutes. The appropriate localization, assembly into multi-subunit protein complexes, and wild-type function of these membrane proteins therefore is vital for mitochondria to maintain appropriate function and support cellular survival. This review will address the composition and functions of mitochondrial membrane localized multi-subunit protein complexes along with how these proteins undergo degradation to maintain homeostatic functions of mitochondria in the context of mitochondria specific transporters and ion channels. Due to the large number of known mitochondrial membrane transporters and ion channels this review will focus on the topics presented at the Mitochondrial Ion Channels and Transporters Symposium hosted by the New York University College of Dentistry in September 2015 in honor of Casey Kinnally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CyP-D:

cyclophilin-D

ETC:

electron transport chain

IMM:

inner mitochondrial membrane

IMS:

inter-membrane space

MIM:

mitochondrial insertion machinery

OMM:

outer mitochondrial membrane

OXPHOS:

oxidative phosphorylation

SAM:

sorting and assembly machinery

TIM:

translocase of the inner membrane

TOM:

translocase of the outer membrane

UPS:

ubiquitin-proteasome system

VDAC:

voltage-dependent anion channel

References

  • Acin-Perez R, Enriquez JA. (2013) The function of the respiratory supercomplexes: the plasticity model. Biochim Biophys Acta 2013 Dec 21;

  • Acín-Pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32(4):529–539

    Article  Google Scholar 

  • Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park H-A, Licznerski P, et al. (2014 Jun) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 16

  • Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345(Pt 2):271–278

    Article  CAS  Google Scholar 

  • Antonsson B, Montessuit S, Sanchez B, Martinou JC (2001) Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276(15):11615–11623

    Article  CAS  Google Scholar 

  • Azzu V, Mookerjee SA, Brand MD (2010a) Rapid turnover of mitochondrial uncoupling protein 3. Biochem J 426(1):13–17

    Article  CAS  Google Scholar 

  • Azzu V, Jastroch M, Divakaruni AS, Brand MD (2010b) The regulation and turnover of mitochondrial uncoupling proteins. Biochim Biophys Acta 1797(6–7):785–791

    Article  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662

    Article  CAS  Google Scholar 

  • Baines C, Kaiser R, Sheiko T, Craigen W, Molkentin J (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550–555

    Article  CAS  Google Scholar 

  • Becker T, Wenz LS, Thornton N, Stroud D, Meisinger C, Wiedemann N, et al. (2011) Biogenesis of mitochondria: dual role of Tom7 in modulating assembly of the preprotein translocase of the outer membrane. J Mol Biol 1:113–124

    Article  Google Scholar 

  • Bioenergetics, (2013) 4th Edition | David Nicholls, Stuart Ferguson | ISBN 9780123884312

  • Bohnert M, Pfanner N, van der Laan M (2015) Mitochondrial machineries for insertion of membrane proteins. Curr Opin Struct Biol 33:92–102

    Article  CAS  Google Scholar 

  • Brdiczka DG, Zorov DB, Sheu S-S (2006) Mitochondrial contact sites: their role in energy metabolism and apoptosis. Biochim Biophys Acta 1762(2):148–163

    Article  CAS  Google Scholar 

  • Brunner G, Neupert W (1968) Turnover of outer and inner membrane proteins of rat liver mitochondria. FEBS Lett 1(3):153–155

    Article  CAS  Google Scholar 

  • Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138(4):628–644

    Article  CAS  Google Scholar 

  • Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301(5632):513–517

    Article  CAS  Google Scholar 

  • Chipuk JE, Green DR (2008) How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18(4):157–164

    Article  CAS  Google Scholar 

  • Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ, et al. (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148(5):988–1000

    Article  CAS  Google Scholar 

  • Crichton PG, Harding M, Ruprecht JJ, Lee Y, Kunji ERS (2013) Lipid, detergent, and Coomassie blue G-250 affect the migration of small membrane proteins in blue native gels: mitochondrial carriers migrate as monomers not dimers. J Biol Chem 288(30):22163–22173

    Article  CAS  Google Scholar 

  • Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin a of a Ca2 + −dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255(1):357–360

    CAS  Google Scholar 

  • Dejean LM, Martinez-Caballero S, Guo L, Hughes C, Teijido O, Ducret T, et al. (2005) Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16(5):2424–2432

    Article  CAS  Google Scholar 

  • Dienhart MK, Stuart RA (2008) The yeast Aac2 protein exists in physical association with the cytochrome bc1-COX supercomplex and the TIM23 machinery. Mol Biol Cell 19(9):3934–3943

    Article  CAS  Google Scholar 

  • Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, et al. (2011) Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145(1):104–116

    Article  CAS  Google Scholar 

  • Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, et al. (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187(7):1023–1036

    Article  CAS  Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20(3):929–935

    Article  CAS  Google Scholar 

  • Ferramosca A, Zara V (2013) Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria. Biochim Biophys Acta 1833(3):494–502

    Article  CAS  Google Scholar 

  • Fu M, St-Pierre P, Shankar J, Wang PTC, Joshi B, Nabi IR (2013) Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell 24(8):1153–1162

    Article  CAS  Google Scholar 

  • Gebert N, Gebert M, Oeljeklaus S, von der Malsburg K, Stroud DA, Kulawiak B, et al. (2011) Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. Mol Cell 44(5):811–818

    Article  CAS  Google Scholar 

  • Geissler A, Chacinska A, Truscott KN, Wiedemann N, Brandner K, Sickmann A, et al. (2002) The mitochondrial presequence translocase. Cell 111(4):507–518

    Article  CAS  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, et al. (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110(15):5887–5892

    Article  CAS  Google Scholar 

  • Gross A, Jockel J, Wei MC, Korsmeyer SJ (1998) Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. Embo j 17(14):3878–3885

    Article  CAS  Google Scholar 

  • Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272(6):3346–3354

    Article  CAS  Google Scholar 

  • Haworth RA, Hunter DR (1979) The Ca2 + −induced membrane transition in mitochondria. Arch Biochem Biophys 195(2):460–467

    Article  CAS  Google Scholar 

  • Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187(7):959–966

    Article  CAS  Google Scholar 

  • Holloway A, Simmonds M, Azad A, Fox JL, Storey A (2015) Resistance to UV-induced apoptosis by β-HPV5 E6 involves targeting of activated BAK for proteolysis by recruitment of the HERC1 ubiquitin ligase. Int J Cancer 136(12):2831–2843

    Article  CAS  Google Scholar 

  • Hunter DR, Haworth RA (1979) The Ca2 + −induced membrane transition in mitochondria. Arch Biochem Biophys 195(2):453–459

    Article  CAS  Google Scholar 

  • Jackson S, Harwood C, Thomas M, Banks L, Storey A (2000) Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev 14(23):3065–3073

    Article  CAS  Google Scholar 

  • Karbowski M, Youle RJ (2011) Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol 23(4):476–482

    Article  CAS  Google Scholar 

  • Kaser M, Kambacheld M, Kisters-Woike B, Langer T. Oma1 (2003) A novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J Biol Chem 278(47):46414–46423

  • Kerscher O, Sepuri NB, Jensen RE (2000) Tim18p is a new component of the Tim54p-Tim22p translocon in the mitochondrial inner membrane. Mol Biol Cell 11(1):103–116

    Article  CAS  Google Scholar 

  • Khalimonchuk O, Jeong M-Y, Watts T, Ferris E, Winge DR (2012) Selective Oma1 protease-mediated proteolysis of Cox1 subunit of cytochrome oxidase in assembly mutants. J Biol Chem 287(10):7289–7300

    Article  CAS  Google Scholar 

  • Koehler CM, Murphy MP, Bally NA, Leuenberger D, Oppliger W, Dolfini L, et al. (2000) Tim18p, a new subunit of the TIM22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. Mol Cell Biol 20(4):1187–1193

    Article  CAS  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, et al. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427(6973):461–465

    Article  CAS  Google Scholar 

  • Kunji ERS, Crichton PG (2010) Mitochondrial carriers function as monomers. Biochim Biophys Acta 1797(6–7):817–831

    Article  CAS  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, et al. (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111(3):331–342

    Article  CAS  Google Scholar 

  • Lang A, John Peter AT, Kornmann B (2015) ER-mitochondria contact sites in yeast: beyond the myths of ERMES. Curr Opin Cell Biol 35:7–12

    Article  CAS  Google Scholar 

  • Lazarou M, Stojanovski D, Frazier AE, Kotevski A, Dewson G, Craigen WJ, et al. (2010) Inhibition of Bak activation by VDAC2 is dependent on the Bak transmembrane anchor. J Biol Chem 285(47):36876–36883

    Article  CAS  Google Scholar 

  • Leung AWC, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283(39):26312–26323

    Article  CAS  Google Scholar 

  • Li B, Dou QP (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci U S A 97(8):3850–3855

    Article  CAS  Google Scholar 

  • Liu FT, Agrawal SG, Gribben JG, Ye H, Du MQ, Newland AC, et al. (2008) Bortezomib blocks Bax degradation in malignant B cells during treatment with TRAIL. Blood 111(5):2797–2805

    Article  CAS  Google Scholar 

  • Liu L, Sakakibara K, Chen Q, Okamoto K (2014) Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 24(7):787–795

    Article  CAS  Google Scholar 

  • Maor R, Jones A, Nühse TS, Studholme DJ, Peck SC, Shirasu K (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 6(4):601–610

    Article  CAS  Google Scholar 

  • Martinez-Caballero S, Dejean LM, Kinnally MS, Oh KJ, Mannella CA, Kinnally KW (2009) Assembly of the mitochondrial apoptosis-induced channel, MAC. J Biol Chem 284(18):12235–12245

    Article  CAS  Google Scholar 

  • Matsumoto M, Hatakeyama S, Oyamada K, Oda Y, Nishimura T, Nakayama KI (2005) Large-scale analysis of the human ubiquitin-related proteome. Proteomics 5(16):4145–4151

    Article  CAS  Google Scholar 

  • McStay GP, Su CH, Tzagoloff A (2013) Modular assembly of yeast cytochrome oxidase. Mol Biol Cell 24(4):440–452

    Article  CAS  Google Scholar 

  • Mehnert CS, Rampelt H, Gebert M, Oeljeklaus S, Schrempp SG, Kochbeck L, et al. (2014) The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J Biol Chem 289(39):27352–27362

    Article  CAS  Google Scholar 

  • Mick DU, Fox TD, Rehling P (2011) Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nat Rev Mol Cell Biol 12(1):14–20

    Article  CAS  Google Scholar 

  • Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta 1817(6):851–862

    Article  CAS  Google Scholar 

  • Mookerjee SA, Brand MD (2011) Characteristics of the turnover of uncoupling protein 3 by the ubiquitin proteasome system in isolated mitochondria. Biochim Biophys Acta 1807(11):1474–1481

    Article  CAS  Google Scholar 

  • Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, et al. (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381(6580):335–341

    Article  CAS  Google Scholar 

  • Naghdi S, Várnai P, Hajnóczky G (2015) Motifs of VDAC2 required for mitochondrial Bak import and tBid-induced apoptosis. Proc Natl Acad Sci U S A 112(41):E5590–E5599

    Article  CAS  Google Scholar 

  • Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 4(11)

  • Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749

    Article  CAS  Google Scholar 

  • Palmieri F (1994) Mitochondrial carrier proteins. FEBS Lett 346(1):48–54

    Article  CAS  Google Scholar 

  • Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, et al. (2001) A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155(5):725–731

    Article  CAS  Google Scholar 

  • Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, et al. (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926

    Article  CAS  Google Scholar 

  • Perocchi F, Jensen LJ, Gagneur J, Ahting U, von Mering C, Bork P, et al. (2006) Assessing systems properties of yeast mitochondria through an interaction map of the organelle. PLoS Genet 2(10):e170

    Article  Google Scholar 

  • Puigserver P, Herron D, Gianotti M, Palou A, Cannon B, Nedergaard J (1992) Induction and degradation of the uncoupling protein thermogenin in brown adipocytes in vitro and in vivo. Evidence for a rapidly degradable pool. Biochem J 284(Pt 2):393–398

    Article  CAS  Google Scholar 

  • Rak M, Tzagoloff A (2009) F1-dependent translation of mitochondrially encoded Atp6p and Atp8p subunits of yeast ATP synthase. Proc Natl Acad Sci U S A 106(44):18509–18514

    Article  CAS  Google Scholar 

  • Rak M, Gokova S, Tzagoloff A (2011a) Modular assembly of yeast mitochondrial ATP synthase. Embo j 30(5):920–930

    Article  CAS  Google Scholar 

  • Rak M, McStay GP, Fujikawa M, Yoshida M, Manfredi G, Tzagoloff A (2011b) Turnover of ATP synthase subunits in F1-depleted HeLa and yeast cells. FEBS Lett 585(16):2582–2586

    Article  CAS  Google Scholar 

  • Rao S, Schmidt O, Harbauer AB, Schönfisch B, Guiard B, Pfanner N, et al. (2012) Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase a phosphorylates the precursor of Tom40 and impairs its import. Mol Biol Cell 23(9):1618–1627

    Article  CAS  Google Scholar 

  • Ren D, Kim H, Tu HC, Westergard TD, Fisher JK, Rubens JA, et al (2009) The VDAC2-BAK rheostat controls thymocyte survival. Sci Signal 2(85):ra48

  • Renault TT, Chipuk JE (2014) Death upon a kiss: mitochondrial outer membrane composition and organelle communication govern sensitivity to BAK/BAX-dependent apoptosis. Chem Biol. 21(1):114–123

    Article  CAS  Google Scholar 

  • Richter U, Lahtinen T, Marttinen P, Suomi F, Battersby BJ (2015) Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness. J Cell Biol 211(2):373–389

    Article  CAS  Google Scholar 

  • Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM, et al. (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci U S A 105(48):18746–18751

    Article  CAS  Google Scholar 

  • Rousset S, Mozo J, Dujardin G, Emre Y, Masscheleyn S, Ricquier D, et al. (2007) UCP2 is a mitochondrial transporter with an unusual very short half-life. FEBS Lett 581(3):479–482

    Article  CAS  Google Scholar 

  • Roy SS, Ehrlich AM, Craigen WJ, Hajnóczky G (2009) VDAC2 is required for truncated BID-induced mitochondrial apoptosis by recruiting BAK to the mitochondria. EMBO Rep 10(12):1341–1347

    Article  CAS  Google Scholar 

  • Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. Embo j 19(8):1777–1783

    Article  Google Scholar 

  • Schmidt O, Harbauer AB, Rao S, Eyrich B, Zahedi RP, Stojanovski D, et al. (2011) Regulation of mitochondrial protein import by cytosolic kinases. Cell 144(2):227–239

    Article  CAS  Google Scholar 

  • Sileikyte J, Blachly-Dyson E, Sewell R, Carpi A, Menabo R, Di Lisa F, et al. (2014 Apr) Regulation of the mitochondrial permeability transition pore by the outer membrane does not involve the peripheral benzodiazepine receptor (TSPO). J Biol Chem. 1

  • Smith PM, Fox JL, Winge DR (2012) Biogenesis of the cytochrome bc(1) complex and role of assembly factors. Biochim Biophys Acta 1817(2):276–286

    Article  CAS  Google Scholar 

  • Stuart R (2002) Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. Biochim Biophys Acta 1592(1):79–87

    Article  CAS  Google Scholar 

  • Stuart RA. (2009) Chapter 11 Supercomplex Organization of the Yeast Respiratory Chain Complexes and the ADP/ATP Carrier Proteins. Mitochondrial Function, Part A: Mitochondrial Electron Transport Complexes and Reactive Oxygen Species. Elsevier; p. 191–208

  • Sugiura A, McLelland GL, Fon EA, McBride HM (2014) A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. Embo j 33(19):2142–2156

    Article  CAS  Google Scholar 

  • Szabo I, Zoratti M (2014) Mitochondrial channels: ion fluxes and more. Physiol Rev 94(2):519–608

    Article  CAS  Google Scholar 

  • Thomas M, Banks L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene [Internet]. 1998; Available from: http://europepmc.org/abstract/med/9881696

  • Thompson WE, Ramalho-Santos J, Sutovsky P (2003) Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol Reprod 69(1):254–260

    Article  CAS  Google Scholar 

  • Thornton N, Stroud DA, Milenkovic D, Guiard B, Pfanner N, Becker T (2010) Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of alpha-helical outer membrane proteins. J Mol Biol 396(3):540–549

    Article  CAS  Google Scholar 

  • Xu S, Cherok E, Das S, Li S, Roelofs BA, Ge SX, et al. (2015) Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol Biol Cell 2015 Nov 12;

  • Yoshii SR, Kishi C, Ishihara N, Mizushima N (2011) Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286(22):19630–19640

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NYIT startup funds and an Institutional Support for Research & Creativity (ISRC) grant to GPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin P. McStay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McStay, G.P. Complex formation and turnover of mitochondrial transporters and ion channels. J Bioenerg Biomembr 49, 101–111 (2017). https://doi.org/10.1007/s10863-016-9648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9648-x

Keywords

Navigation