Skip to main content
Log in

Structure of hen egg-white lysozyme solvated in TFE/water: a molecular dynamics simulation study based on NMR data

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Various experimental studies of hen egg white lysozyme (HEWL) in water and TFE/water clearly indicate structural differences between the native state and TFE state of HEWL, e.g. the helical content of the protein in the TFE state is much higher than in the native state. However, the available detailed NMR studies were not sufficient to determine fully a structure of HEWL in the TFE state. Different molecular dynamics (MD) simulations, i.e. at room temperature, at increased temperature and using proton–proton distance restraints derived from NMR NOE data, have been used to generate configurational ensembles corresponding to the TFE state of HEWL. The configurational ensemble obtained at room temperature using atom-atom distance restraints measured for HEWL in TFE/water solution satisfies the experimental data and has the lowest protein energy. In this ensemble residues 50–58, which are part of the β-sheet in native HEWL, adopt fluctuating α-helical secondary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • http://www.gromos.net. URL http://www.gromos.net

  • Artymiuk PJ, Blake CCF, Rice DW, Wilson KS (1982) The structures of the monoclinic and orthorhombic forms of hen egg-white lysozyme at 6 Å resolution. Acta Crystallogr Sect B Struct Sci 38:778–783

    Article  Google Scholar 

  • Bégué JP, Bonnet-Delpon D, Crousse B (2004) Fluorinated alcohols: a new medium for selective and clean reaction. Synlett 1:18–29

    Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  ADS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) chapter interaction models for water in relation to protein hydration. Reidel, Dordrecht, pp 331–342

  • Blanco FJ, Jimenez MA, Pineda A, Rico M, Santoro J, Nieto JL (1994) NMR solution structure of the isolated N-terminal fragment of protein-G b1 domain: evidence of trifluoroethanol induced native-like β-hairpin formation. Biochemistry 33(19):6004–6014. doi:10.1021/bi00185a041

    Article  Google Scholar 

  • Buck M (1994) NMR Studies of the Dynamics and Folding of Hen Lyzozyme. PhD thesis, University of Oxford

  • Buck M (1998) Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys 31(3):297–355

    Article  Google Scholar 

  • Buck M, Radford SE, Dobson CM (1993) A partially folded state of hen egg-white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry 32(2):669–678. doi:10.1021/bi00053a036

    Article  Google Scholar 

  • Buck M, Schwalbe H, Dobson CM (1995) Characterization of conformational preferences in a partly folded protein by heteronuclear NMR-spectroscopy: assignment and secondary structure-analysis of hen egg-white lysozyme in trifluoroethanol. Biochemistry 34(40):13219–13232

    Article  Google Scholar 

  • Buck M, Schwalbe H, Dobson CM (1996) Main-chain dynamics of a partially folded protein: N-15 NMR relaxation measurements of hen egg white lysozyme denatured in trifluoroethanol. J Mol Biol 257(3):669–683

    Article  Google Scholar 

  • Cammers Goodwin A, Allen TJ, Oslick SL, McClure KF, Lee JH, Kemp DS (1996) Mechanism of stabilization of helical conformations of polypeptides by water containing trifluoroethanol. J Am Chem Soc 118(13):3082–3090. doi:10.1021/ja952900z

    Article  Google Scholar 

  • Chiti F, Taddei N, Bucciantini M, White P, Ramponi G, Dobson CM (2000) Mutational analysis of the propensity for amyloid formation by a globular protein. EMBO J 19(7):1441–1449. doi:10.1093/emboj/19.7.1441

    Article  Google Scholar 

  • D’Amico M, Raccosta S, Cannas M, Martorana V, Manno M (2011) Existence of metastable intermediate lysozyme conformation highlights the role of alcohols in altering protein stability. J Phys Chem B 115(14):4078–4087. doi:10.1021/jp106748g

    Article  Google Scholar 

  • Diaz MD, Fioroni M, Burger K, Berger S (2002) Evidence of complete hydrophobic coating of bombesin by trifluoroethanol in aqueous solution: an NMR spectroscopic and molecular dynamics study. Chem Eur J 8(7):1663–1669. doi:10.1002/1521-3765(20020402)8:7<1663

    Article  Google Scholar 

  • Eichenberger AP, Allison JR, Dolenc J, Geerke DP, Horta BAC, Meier K, Oostenbrink C, Schmid N, Steiner D, Wang DQ, van Gunsteren WF (2011) GROMOS++ software for the analysis of biomolecular simulation trajectories. J Chem Theory Comput 7(10):3379–3390. doi:10.1021/ct2003622

    Article  Google Scholar 

  • Fezoui Y, Teplow DB (2002) Kinetic studies of amyloid β-protein fibril assembly: differential effects of α-helix stabilization. J Biol Chem 277(40):36948–36954. doi:10.1074/jbc.M204168200

    Article  Google Scholar 

  • Fioroni M, Burger K, Mark AE, Roccatano D (2000) A new 2,2,2-trifluoroethanol model for molecular dynamics simulations. J Phys Chem B 104(51):12347–12354. doi:10.1021/jp002115v

    Article  Google Scholar 

  • Fioroni M, Diaz MD, Burger K, Berger S (2002) Solvation phenomena of a tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion NMR, intermolecular NOE, and molecular dynamics study. J Am Chem Soc 124(26):7737–7744. doi:10.1021/ja0259335

    Article  Google Scholar 

  • Harvey SC, Tan RKZ, Cheatham TE (1998) The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition. J Comput Chem 19(7):726–740 ISSN 01928651

    Article  Google Scholar 

  • Heinz TN, van Gunsteren WF, Hünenberger PH (2001) Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations. J Chem Phys 115(3):1125–1136

    Article  ADS  Google Scholar 

  • Hockney RW, Eastwood JW (1981) Computer simulation using particles. McGraw-Hill, New York

    Google Scholar 

  • Hong DP, Hoshino M, Kuboi R, Goto Y (1999) Clustering of fluorine-substituted alcohols as a factor responsible for their marked effects on proteins and peptides. J Am Chem Soc 121(37):8427–8433

    Article  Google Scholar 

  • Hoshino M, Hagihara Y, Hamada D, Kataoka M, Goto Y (1997) Trifluoroethanol-induced conformational transition of hen egg-white lysozyme studied by small-angle X-ray scattering. FEBS Lett 416(1):72–76

    Article  Google Scholar 

  • Jasanoff A, Fersht AR (1994) Quantitative-determination of helical propensities from trifluoroethanol titration curves. Biochemistry 33(8):2129–2135. doi:10.1021/bi00174a020

    Article  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  Google Scholar 

  • Kumar S, Modig K, Halle B (2003) Trifluoroethanol-induced \(\beta \rightarrow \alpha\) transition in β-lactoglobulin: Hydration and cosolvent binding studied by 2H, 17O, and 19F magnetic relaxation dispersion. Biochemistry 42(46):13708–13716. doi:10.1021/bi035330l

    Article  Google Scholar 

  • Lu H, Buck M, Radford SE, Dobson CM (1997) Acceleration of the folding of hen lysozyme by trifluoroethanol. J Mol Biol 265(2):112–117. doi:10.1006/jmbi.1996.0715

    Article  Google Scholar 

  • Mehrnejad F, Naderi-Manesh H, Ranjbar B (2007) The structural properties of magainin in water, TFE/water, and aqueous urea solutions: molecular dynamics simulations. Proteins 67(4):931–940. doi:10.1002/prot.21293

    Article  Google Scholar 

  • Nelson JW, Kallenbach NR (1986) Stabilization of the ribonuclease S-peptide α-helix by trifluoroethanol. Proteins Struct Funct Genet 1(3):211–217. doi:10.1002/prot.340010303

    Article  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676. doi:10.1002/jcc.20090

    Article  Google Scholar 

  • Povey JF, Smales CM, Hassard SJ, Howard MJ (2007) Comparison of the effects of 2,2,2-trifluoroethanol on peptide and protein structure and function. J Struct Biol 157(2):329–338. doi:10.1016/j.jsb.2006.07.008

    Article  Google Scholar 

  • Rajan R, Balaram P (1996) A model for the interaction of trifluoroethanol with peptides and proteins. Int J Pept Protein Res 48(4):328–336

    Article  Google Scholar 

  • Roccatano D, Colombo G, Fioroni M, Mark AE (2002) Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study. Proc Natl Acad Sci USA 99(19):12179–12184. doi:10.1073/pnas.182199699

    Article  ADS  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  ADS  Google Scholar 

  • Schmid N, Allison JR, Dolenc J, Eichenberger AP, Kunz APE, van Gunsteren WF (2011) Biomolecular structure refinement using the GROMOS simulation software. J Biomol NMR 51(3):265–281. doi:10.1007/s10858-011-9534-0

    Article  Google Scholar 

  • Schmid N, Christ CD, Christen M, Eichenberger AP, van Gunsteren WF (2012) Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation. Comput Phys Commun 183(4):890–903. doi:10.1016/j.cpc.2011.12.014

    Article  ADS  Google Scholar 

  • Schwalbe H, Grimshaw SB, Spencer A, Buck M, Boyd J, Dobson CM, Redfield C, Smith LJ (2001) A refined solution structure of hen lysozyme determined using residual dipolar coupling data. Protein Sci 10(4):677–688

    Article  Google Scholar 

  • Shiraki K, Nishikawa K, Goto Y (1995) Trifluoroethanol-induced stabilization of the α-helical structure of β-lactoglobulin - implication for non-hierarchical protein-folding. J Mol Biol 245(2):180–194. doi:10.1006/jmbi.1994.0015

    Article  Google Scholar 

  • Shuklov IA, Dubrovina NV, Boerner A (2007) Fluorinated alcohols as solvents, cosolvents and additives in homogeneous catalysis. Synthesis (Stuttgart) 19:2925–2943

    Google Scholar 

  • Smith LJ, Alexandrescu AT, Pitkeathly M, Dobson CM (1994) Solution structure of a peptide fragment of human α-lactalbumin in trifluoroethanol: a model for local-structure in the molten globule. Structure 2(8):703–712. doi:10.1016/S0969-2126(00)00071-X

    Article  Google Scholar 

  • Starzyk A, Barber-Armstrong W, Sridharan M, Decatur SM (2005) Spectroscopic evidence for backbone desolvation of helical peptides by 2,2,2-trifluoroethanol: an isotope-edited FTIR study. Biochemistry 44(1):369–376. doi:10.1021/bi0481444

    Article  Google Scholar 

  • van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide. vdf Hochschulverlag AG an der ETH Zürich and BIOMOS b.v., Zürich, Groningen

  • Wüthrich K, Billeter M, Braun W (1983) Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton–proton distance constraints with nuclear magnetic resonance. J Mol Biol 169(4):949–961

    Article  Google Scholar 

  • Yang JJ, Buck M, Pitkeathly M, Kotik M, Haynie DT, Dobson CM, Radford SE (1995) Conformational properties of 4 peptides spanning the sequence of hen lysozyme. J Mol Biol 252(4):483–491. doi:10.1006/jmbi.1995.0513

    Article  Google Scholar 

Download references

Acknowledgments

We thank Matthias Buck for giving us the list of NOEs for lysozyme in TFE used in the structure calculations reported in his D. Phil. thesis and for helpful advise and discussion. This work was financially supported by the National Center of Competence in Research (NCCR) in Structural Biology and by Grant number 200020-137827 of the Swiss National Science Foundation, and by Grant number 228076 of the European Research Council, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred F. van Gunsteren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (142 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichenberger, A.P., van Gunsteren, W.F. & Smith, L.J. Structure of hen egg-white lysozyme solvated in TFE/water: a molecular dynamics simulation study based on NMR data. J Biomol NMR 55, 339–353 (2013). https://doi.org/10.1007/s10858-013-9717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9717-y

Keywords

Navigation