Skip to main content

Advertisement

Log in

Human beta-defensin-3 producing cells in septic implant loosening

  • Clinical Applications of Biomaterials
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Human β-defensin-3 (hBD-3) has been found in synovial fluid and later in periprosthetic tissues in septic joint implant loosening. The aim of the present study was to identify its cellular sources. Tissue samples from 12 patients were analyzed. A fully automatic Leica BOND MAX staining robot was used. Affinity-purified rabbit anti-human hBD-3 IgG was applied in a two-layer horse radish peroxidase/anti-rabbit-labeled polymer method. Double immunofluorescence of hBD3 together with CD68, CD31, heat shock protein 47 (HSP47) and mast cell tryptase (MCT) staining was done. Human BD-3 was found in monocyte/macrophage-like cells, vascular endothelial cells and fibroblasts-like cells, but was weakly expressed in foreign body giant cells and negative in neutrophils. Human BD-3 was found in CD68 and CD31 immunoreactive cells, whereas HSP47 and MCT positive cells were hBD-3 negative. Immunostaining of hBD-3 was strong in some tissue areas but weak or absent in others. Monocyte/macrophages and endothelial cells were established in this study as the major cellular sources of hBD-3 in septic loosening, but fibroblasts and foreign body giant cells can also contribute to its production. The heterogeneous topological staining of hBD-3 suggests local regulation, possibly by bacterial products, damage-associated molecular patterns and cytokines. The results explain the increased synovial fluid/tissue concentrations of hBD-3 in septic loosening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. Infection burden for hip and knee arthroplasty in the United States. J Arthroplas. 2008;23:984–91.

    Article  Google Scholar 

  2. Zimmerli W. Infection and musculoskeletal conditions: prosthetic-joint-associated infections. Best Pract Res Clin Rheumatol. 2006;20:1045–63.

    Article  Google Scholar 

  3. Del Pozo JL, Patel R. Infection associated with prosthetic joints. N Engl J Med. 2009;361:787–94.

    Article  Google Scholar 

  4. Workgroup Convened by the Musculoskeletal Infection Society. New definition for periprosthetic joint infection. J Arthroplas. 2011;26:1136–8.

    Article  Google Scholar 

  5. Esteban J, Alonso-Rodriguez N, Del-Prado G, Ortiz-Pérez A, Molina-Manso D, Cordero-Ampuero J, Sandoval E, Fernández-Roblas R, Gómez-Barrena E. PCR-hybridization after sonication improves diagnosis of implant-related infection. Acta Orthop. 2012;83:299–304.

    Article  Google Scholar 

  6. Miyamae Y, Inaba Y, Kobayashi N, Choe H, Yukizawa Y, Ike H, Saito T. Different diagnostic properties of C-reactive protein, real-time PCR, and histopathology of frozen and permanent sections in diagnosis of periprosthetic joint infection. Acta Orthop. 2013;84:524–9.

    Article  Google Scholar 

  7. Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.

    Article  Google Scholar 

  8. Semple F, Dorin JR. β-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun. 2012;4:337–48.

    Article  Google Scholar 

  9. García JR, Jaumann F, Schulz S, Krause A, Rodríguez-Jiménez J, Forssmann U, Adermann K, Klüver E, Vogelmeier C, Becker D, Hedrich R, Forssmann WG, Bals R. Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res. 2001;306:257–64.

    Article  Google Scholar 

  10. Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001;276:5707–13.

    Article  Google Scholar 

  11. Dhople V, Krukemeyer A, Ramamoorthy A. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. BiochimBiophysActa. 2006;1758:1499–512.

    Google Scholar 

  12. Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel). 2014;7:545–94.

    Article  Google Scholar 

  13. Brender JR, McHenry AJ, Ramamoorthy A. Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front Immunol. 2012;3:195.

    Article  Google Scholar 

  14. Gollwitzer H, Dombrowski Y, Prodinger PM, Peric M, Summer B, Hapfelmeier A, Saldamli B, Pankow F, von Eisenhart-Rothe R, Imhoff AB, Schauber J, Thomas P, Burgkart R, Banke IJ. Antimicrobial peptides and proinflammatory cytokines in periprosthetic joint infection. J Bone Joint Surg Am. 2013;95:644–51.

    Article  Google Scholar 

  15. Liu GD, Yu HJ, Ou S, Luo X, Ni WD, Huang XK, Chen JY, Wang Y, Javard P, Fei J. Human beta-defensin-3 for the diagnosis of periprosthetic joint infection and loosening. Orthopedics. 2014;37:e384–90.

    Article  Google Scholar 

  16. Dunsche A, Açil Y, Dommisch H, Siebert R, Schröder JM, Jepsen S. The novel human beta-defensin-3 is widely expressed in oral tissues. Eur J Oral Sci. 2002;110:121–4.

    Article  Google Scholar 

  17. Samaranayake LP, Darveau RP, Jin L. Expression of human beta-defensin-3 in gingival epithelia. J Periodontal Res. 2005;40:474–81.

    Article  Google Scholar 

  18. Moran MM, Siegel RJ, Said JW, Fishbein MC. Demonstration of myoglobin and CK-M in myocardium. Comparison of five fixation methods and three immunohistochemical techniques. J Histochem Cytochem. 1985;33:1110–5.

    Article  Google Scholar 

  19. Beckett JH, Bigbee JW. Immunoperoxidase localization of treponemapallidum: its use in formaldehyde-fixed and paraffin-embedded tissue sections. Arch Pathol Lab Med. 1979;103:135–8.

    Google Scholar 

  20. Sabattini E, Bisgaard K, Ascani S, Poggi S, Piccioli M, Ceccarelli C, Pieri F, Fraternali-Orcioni G, Pileri SA. The EnVision++ system: a new immunohistochemical method for diagnostics and research. Critical comparison with the APAAP, ChemMate, CSA, LABC, and SABC techniques. J Clin Pathol. 1998;51:506–11.

    Article  Google Scholar 

  21. Liu J, Du X, Chen J, Hu L, Chen L. The induction expression of human β-defensins in gingival epithelial cells and fibroblasts. Arch Oral Biol. 2013;58:1415–21.

    Article  Google Scholar 

  22. Nishimura M, Abiko Y, Kurashige Y, Takeshima M, Yamazaki M, Kusano K, Saitoh M, Nakashima K, Inoue T, Kaku T. Effect of defensin peptides on eukaryotic cells: primary epithelial cells, fibroblasts and squamous cell carcinoma cell lines. J Dermatol Sci. 2004;36:87–95.

    Article  Google Scholar 

  23. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33:5967–82.

    Article  Google Scholar 

  24. Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 2011;6:1329–49.

    Article  Google Scholar 

  25. Feng Z, Jiang B, Chandra J, Ghannoum M, Nelson S, Weinberg A. Human beta-defensins: differential activity against candidal species and regulation by Candida albicans. J Dent Res. 2005;84:445–50.

    Article  Google Scholar 

  26. Leung K. 99mTc-Human β-defensin-3. Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US). 2009; 2004-2013. Available from URL: http://www.ncbi.nlm.nih.gov/books/NBK22975/pdf/Defensin3-99mTc.pdf. Accessed 23 July 2014.

  27. Huang Q, Yu HJ, Liu GD, Huang XK, Zhang LY, Zhou YG, Chen JY, Lin F, Wang Y, Fei J. Comparison of the effects of human β-defensin 3, vancomycin, and clindamycin on Staphylococcus aureus biofilm formation. Orthopaedics. 2012;35:e53–60.

    Article  Google Scholar 

  28. Huang Q, Fei J, Yu HJ, Gou YB, Huang XK. Effects of human β-defensin-3 on biofilm formation–regulating genes dltB and icaA in Staphylococcus aureus. Mol Med Rep. 2014;10:825–31.

    Google Scholar 

  29. Sutton JM, Pritts TA. Human beta-defensin3: a novel inhibitor of Staphylococcus-produced biofilm production. J Surg Res. 2014;186:99–100.

    Article  Google Scholar 

  30. Lee JK, Chang SW, Perinpanayagam H, Lim SM, Park YJ, Han SH, Baek SH, Zhu Q, Bae KS, Kum KY. Antibacterial efficacy of a human β-defensin-3 peptide on multispecies biofilms. J Endod. 2013;39:1625–9.

    Article  Google Scholar 

  31. Paulsen F, Pufe T, Conradi L, Varoga D, Tsokos M, Papendieck J, Petersen W. Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J Pathol. 2002;198:369–77.

    Article  Google Scholar 

  32. Bokarewa MI, Jin T, Tarkowski A. Intraarticular release and accumulation of defensins and bactericidal/permeability-increasing protein in patients with rheumatoid arthritis. J Rheumatol. 2003;30:1719–24.

    Google Scholar 

  33. Röhrl J, Yang D, Oppenheim JJ, Hehlgans T. Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol. 2010;184:6688–94.

    Article  Google Scholar 

  34. Wu Z, Hoover DM, Yang D, Boulègue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Proc Natl Acad Sci USA. 2003;100:8880–5.

    Article  Google Scholar 

  35. Soruri A, Grigat J, Forssmann U, Riggert J, Zwirner J. beta-Defensinschemoattract macrophages and mast cells but not lymphocytes and dendritic cells: CCR6 is not involved. Eur J Immunol. 2007;37:2474–86.

    Article  Google Scholar 

  36. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, Weinberg A, Sieg SF. Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci USA. 2007;104:18631–5.

    Article  Google Scholar 

  37. Henriques ST, Melo MN, Castanho MA. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J. 2006;399:1–7.

    Article  Google Scholar 

  38. Tewary P, de la Rosa G, Sharma N, Rodriguez LG, Tarasov SG, Howard OM, Shirota H, Steinhagen F, Klinman DM, Yang D, Oppenheim JJ. β-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-α production by human plasmacytoid dendritic cells, and promote inflammation. J Immunol. 2013;191:865–74.

    Article  Google Scholar 

  39. Tamaki Y, Takakubo Y, Goto K, Hirayama T, Sasaki K, Konttinen YT, Goodman SB, Takagi M. Increased expression of toll-like receptors in aseptic loose periprosthetic tissues and septic synovial membranes around total hip implants. J Rheumatol. 2009;36:598–608.

    Article  Google Scholar 

  40. Takagi M, Tamaki Y, Hasegawa H, Takakubo Y, Konttinen L, Tiainen VM, Lappalainen R, Konttinen YT, Salo J. Toll-like receptors in the interface membrane around loosening total hip replacement implants. J Biomed Mater Res A. 2007;81:1017–26.

    Article  Google Scholar 

  41. Maisetta G, Batoni G, Esin S, Florio W, Bottai D, Favilli F, Campa M. In vitro bactericidal activity of human beta-defensin 3 against multidrug-resistant nosocomial strains. Antimicrob Agents Chemother. 2006;50:806–9.

    Article  Google Scholar 

  42. Gottlieb CT, Thomsen LE, Ingmer H, Mygind PH, Kristensen HH, Gram L. Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression. BMC Microbiol. 2008;26(8):205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaakko Levón.

Additional information

Yrjö T. Konttinen—Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levón, J., Al-Samadi, A., Mackiewicz, Z. et al. Human beta-defensin-3 producing cells in septic implant loosening. J Mater Sci: Mater Med 26, 98 (2015). https://doi.org/10.1007/s10856-015-5440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5440-4

Keywords

Navigation