Skip to main content

Advertisement

Log in

Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A bio-corrodible nitrided iron stent was developed using a vacuum plasma nitriding technique. In the nitrided iron stents, the tensile strength, radial strength, stiffness and in vitro electrochemical corrosion rate were significantly increased compared with those of the control pure iron stent. To evaluate its performance in vivo, the deployment of the nitrided iron stents in juvenile pig iliac arteries was performed. At 3 or 6 months postoperatively, the stented vessels remained patent well; however, slight luminal loss resulting from intimal hyperplasia and relative stenosis of the stented vessel segment with piglets growth were observed by 12 months; no thrombosis or local tissue necrosis was found. At 1 month postoperatively, a nearly intact layer of endothelial cells formed on the stented vessel wall. Additionally, a decreased inflammation scoring, considerably corroded struts and corrosion products accumulation were seen. These findings indicate the potential of this nitrided iron stent as an attractive biodegradable stent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ozawa A, Predescu D, Chaturvedi R, Lee KJ, Benson LN. Cutting balloon angioplasty for aortic coarctation. J Invasive Cardiol. 2009;21(6):295–9.

    Google Scholar 

  2. Mohan UR, Danon S, Levi D, Connolly D, Moore JW. Stent implantation for coarctation of the aorta in children <30 kg. JACC Cardiovasc Interv. 2009;2(9):877–83.

    Article  Google Scholar 

  3. Baerlocher L, Kretschmar O, Harpes P, Arbenz U, Berger F, Knirsch W. Stent implantation and balloon angioplasty for treatment of branch pulmonary artery stenosis in children. Clin Res Cardiol. 2008;97(5):310–7.

    Article  Google Scholar 

  4. Tomita H, Nakanishi T, Hamaoka K, Kobayashi T, Ono Y. Stenting in congenital heart disease: medium- and long-term outcomes from the JPIC stent survey. Circ J. 2010;74(8):1676–83.

    Article  Google Scholar 

  5. Bruckheimer E, Dagan T, Amir G, Birk E. Covered cheatham-platinum stents for serial dilation of severe native aortic coarctation. Catheter Cardiovasc Interv. 2009;74(1):117–23.

    Article  Google Scholar 

  6. Zanjani KS, Sabi T, Moysich A, Ovroutski S, Peters B, Miera O, Kühne T, Nagdyman N, Berger F, Ewert P. Feasibility and efficacy of stent redilatation aortic coarctation. Catheter Cardiovasc Interv. 2008;72(4):552–6.

    Article  Google Scholar 

  7. Duke C, Rosenthal E, Qureshi SA. The efficacy and safety of stent redilatation in congenital heart disease. Heart. 2003;89(8):905–12.

    Article  CAS  Google Scholar 

  8. Ewert P, Riesenkampff E, Neuss M, Kretschmar O, Nagdyman N, Lange PE. Novel growth stent for the permanent treatment of vessel stenosis in growing children: an experimental study. Catheter Cardiovasc Interv. 2004;62(4):506–10.

    Article  Google Scholar 

  9. Mullins CE. Inappropriate stents: primary cause of failure of stent redilatation in coarctation of the aorta. Catheter Cardiovasc Interv. 2008;72(4):557–8.

    Article  Google Scholar 

  10. Moravej M, Mantovani D. Biodegradable metals for cardiovascular stent application: interests and new opportunities. Int J Mol Sci. 2011;12(7):4250–70.

    Article  CAS  Google Scholar 

  11. Waksman R, Pakala R. Biodegradable and bioabsorbable stents. Curr Pharm Des. 2010;16(36):4041–51.

    Article  CAS  Google Scholar 

  12. O’Brien B, Carroll W. The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater. 2009;5(4):945–58.

    Article  Google Scholar 

  13. Ghimire G, Spiro J, Kharbanda R, Roughton M, Barlis P, Mason M, Ilsley C, Di Mario C, Erbel R, Waksman R, Dalby M. Initial evidence for the return of coronary vasoreactivity following the absorption of bio-absorbable magnesium alloy coronary stents. EuroIntervention. 2009;4(4):481–4.

    Article  Google Scholar 

  14. Serruys PW, Ormiston JA, Onuma Y, Regar E, Gonzalo N, Garcia–Garcia HM, Nieman K, Bruining N, Dorange C, Miquel-Hébert K, Veldhof S, Webster M, Thuesen L, Dudek D. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009;373(9667):897–910.

    Article  CAS  Google Scholar 

  15. Waksman R, Erbel R, Di Mario C, Bartunek J, de Bruyne B, Eberli FR, Erne P, Haude M, Horrigan M, Ilsley C, Böse D, Bonnier H, Koolen J, Lüscher TF, Weissman NJ. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc Interv. 2009;2(4):312–20.

    Article  Google Scholar 

  16. Hermawan H, Purnama A, Dube D, Couet J, Mantovani D. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater. 2010;6(5):1852–60.

    Article  CAS  Google Scholar 

  17. Zartner P, Cesnjevar R, Singer H, Weyand M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovasc Interv. 2005;66(4):590–4.

    Article  Google Scholar 

  18. Rao PS. Stents in the management of aortic coarctation in young children. JACC Cardiovasc Interv. 2009;2(9):884–6.

    Article  Google Scholar 

  19. Anderews NC. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986–95.

    Article  Google Scholar 

  20. Waksman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio FO. Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol. 2008;21(1):15–20.

    Article  Google Scholar 

  21. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006;27(28):4955–62.

    Article  CAS  Google Scholar 

  22. Peuster M, Beerbaum P, Bach FW, Hauser H. Are resorbable implants about to become a reality? Cardiol Young. 2006;16(2):107–16.

    Article  Google Scholar 

  23. Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010;6(5):1705–13.

    Article  CAS  Google Scholar 

  24. Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol. 1998;31(1):224–30.

    Article  CAS  Google Scholar 

  25. Liu B, Zheng YF. Effects of alloying elements (Mn, Co., Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomater. 2011;7(3):1407–20.

    Article  CAS  Google Scholar 

  26. Bayer U. Implant and method for manufacturing same. US Patent No. 20110112628A1, 2011.

  27. Moravej M, Prima F, Fiset M, Mantovani D. Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship. Acta Biomater. 2010;6(5):1726–35.

    Article  CAS  Google Scholar 

  28. Moravej M, Purnama A, Fiset M, Couet J, Mantovani D. Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater. 2010;6(5):1843–51.

    Article  CAS  Google Scholar 

  29. Zhu SF, Huang N, Shu H, Wu YP, Xu L. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA. Appl Surf Sci. 2009;256(1):99–104.

    Article  CAS  Google Scholar 

  30. Zhu SF, Huang N, Xu L, Zhang Y, Liu HQ, Lei YF, Sun H, Yao Y. Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surf Coat Tech. 2009;203(10):1523–9.

    Article  CAS  Google Scholar 

  31. Chen CZ, Li Q, Leng YX, Chen JY, Zhang PC, Bai B, Huang N. Improved hardness and corrosion resistance of iron by Ti/TiN multilayer coating and plasma nitriding duplex treatment. Surf Coat Tech. 2010;204(18):3082–6.

    Article  CAS  Google Scholar 

  32. Chen CZ, Shi XH, Zhang PC, Bai B, Leng YX, Huang N. The microstructure and properties of commercial pure iron modified by plasma nitriding. Solid State Ionics. 2008;179(21):971–4.

    Article  CAS  Google Scholar 

  33. Schmidt W, Andresen R, Behrens P, Schmitz KP. Characteristic mechanical properties of balloon-expandable peripheral stent systems. Rofo. 2002;174(11):1430–7.

    Article  CAS  Google Scholar 

  34. Mueller PP, May T, Perz A, Hauser H, Peuster M. Control of smooth muscle cell proliferation by ferrous iron. Biomaterials. 2006;27(10):2193–200.

    Article  CAS  Google Scholar 

  35. Nakazawa G, Finn AV, Vorpahl M, Ladich ER, Kolodgie FD, Virmani R. Coronary responses and differential mechanisms of late stent thrombosis attributed to first-generation sirolimus- and paclitaxel-eluting stents. J Am Coll Cardiol. 2011;57(4):390–8.

    Article  CAS  Google Scholar 

  36. Niccoli G, Montone RA, Ferrante G, Crea F. The evolving role of inflammatory biomarkers in risk assessment after stent implantation. J Am Coll Cardiol. 2010;56(22):1783–93.

    Article  Google Scholar 

  37. Ielasi A, Al-Lamee R, Colombo A. Stent thrombosis and duration of dual antiplatelet therapy. Curr Pharm Des. 2010;16(36):4052–63.

    Article  CAS  Google Scholar 

  38. El-Omar MM, Dangas G, Iakovou I, Mehran R. Update on in-stent restenosis. Curr Interv Cardiol Rep. 2001;3(4):296–305.

    Google Scholar 

  39. Schömig A, Kastrati A, Mudra H, Blasini R, Schühlen H, Klauss V, Richardt G, Neumann FJ. Four-year experience with Palmaz-Schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure. Circulation. 1994;90(6):2716–24.

    Article  Google Scholar 

  40. Serruys PW, Kutryk MJ, Ong AT. Coronary-artery stents. N Engl J Med. 2006;354(5):483–95.

    Article  CAS  Google Scholar 

  41. Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6(5):1693–7.

    Article  CAS  Google Scholar 

  42. Pendyala LK, Yin X, Li J, Chen JP, Chronos N, Hou D. The first generation drug-eluting stents and coronary endothelial dysfunction. JACC Cardiovasc Interv. 2009;2(12):1169–77.

    Article  Google Scholar 

  43. Yao ZH, Matsubara T, Inada T, Suzuki Y, Suzuki T. Neointimal coverage of sirolimus-eluting stents 6 months and 12 months after implantation: evaluation by optical coherence tomography. Chin Med J (Engl). 2008;121(6):503–7.

    Google Scholar 

  44. Uurto I, Mikkonen J, Parkkinen J, Keski-Nisula L, Nevalainen T, Kellomaki M, Törmälä P, Salenius JP. Drug-eluting biodegradable poly-d/l-lactic acid vascular stents: an experimental pilot study. J Endovasc Ther. 2005;12(3):371–9.

    Article  Google Scholar 

  45. Pierson D, Edick J, Tauscher A, Pokorney E, Bowen P, Gelbaugh J, Stinson J, Getty H. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomed Mater Res B Appl Biomater. 2012;100(1):58–67.

    Google Scholar 

  46. [46] Bornapour M, Muja N, Shum-Tim D, Cerruti M, Pekguleryuz M. Biocompatibility and biodegradability of Mg-Sr alloys: the formation of Sr-substituted hydroxyapatite. Acta Biomater 2012.

Download references

Acknowledgments

This program was financially supported by the National 863 Program (Grant No. 2011AA030103), the Provincial Science and Technology Plan Program of Guangdong (Grant No. 2008A030102006), the Municipal Key Technologies R&D Program of Shenzhen (Grant No. ZD200904300071A), the Municipal Special Funds for Industry-University-Research Institute Collaboration (Grant No. SY200806270124A), the Municipal Science and Technology Plan of Shenzhen General Program (Grant No. JSA201006010138A), and the Municipal Education committee of Shanghai-Project in Budget (Grant No. 2011JW54). The authors thank Ke Dai, Ning Ma, Ruidong Zhang, Zuming Jiang, Xiaoqing Yu, and Yiwei Chen from the Heart Center, Shanghai Children’s Medical Center, Shanghai JiaoTong University School of Medicine, China, for their assistance with the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Q., Zhang, D., Xin, C. et al. Characterization and in vivo evaluation of a bio-corrodible nitrided iron stent. J Mater Sci: Mater Med 24, 713–724 (2013). https://doi.org/10.1007/s10856-012-4823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4823-z

Keywords

Navigation