Skip to main content

Advertisement

Log in

Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The influence of 6 % sodium hypochlorite (NaClO) treatment on adhesion and proliferation of MC3T3 pre-osteoblast cells seeded on electropolished (EP) and magnetoelectropolished (MEP) nitinol surfaces were investigated. The chemistry, topography, roughness, surface energy, wettability of EP and MEP nitinol surfaces before and after NaClO treatment were studied with X-ray photoelectron spectroscopy (XPS), profilometry, and contact angle meter. In vitro interaction of osteoblast cell and NaClO treated EP and MEP nitinol surfaces were assessed after 3 days of incubation by scanning electron microscopy. The XPS analysis shows that NaClO treatment increases oxygen content especially in subsurface oxide layer of EP and MEP nitinol. The changes of both basic components of nitinol, namely nickel and titanium in oxide layer, were negligible. The NaClO treatment did not influence physico-morphological surface properties of EP and MEP nitinol to a big extent. The osteoblast cells show remarkable adherence and proliferation improvement on NaClO treated EP and MEP nitinol surfaces. After 3 days of incubation they show almost total confluence on both NaClO treated surfaces. The present study shows that NaClO treatment of EP and MEP nitinol surfaces alters oxide layer by enriching it in oxygen and by this improves bone cell–nitinol interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shabalovskaya SA. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed Mater Eng. 1996;6:267–89.

    CAS  Google Scholar 

  2. Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopedic implants. J Bone Jt Surg. 2011;83(3):428–36.

    Google Scholar 

  3. Horbett TA. Principles underlying the role of adsorbed plasma-proteins in blood interaction with foreign materials. Cardiovasc Pathol. 1993;2(3):137–48.

    Article  Google Scholar 

  4. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238:491–7.

    Article  CAS  Google Scholar 

  5. Petrini L, Migiavacca F. Review article: biomedical applications of shape memory alloys. Hindawi Publishing Corporation, J Metall. 2011. pp. 15. Article ID 501483.

  6. Haider W. Enhanced biocompatibility of NiTi (Nitinol) via surface treatment and alloying. Electronic Theses and Dissertations. 2010. Florida International University, Miami, Paper 177.

  7. Sigel A, Sigel H, Sigel RKO. Metal ions in life. Science. 2007;2:619–60.

    Google Scholar 

  8. Haider W, Munroe N, Tek V, Pulletikurthi C, Puneet K, Gill S, Pandya S. Review on surface modifications of nitinol. J Long Term Eff Med Implants. 2010;19(2):113–22.

    Article  Google Scholar 

  9. Bernard SA, Balla VK, Devies NM, Bose S, Bandyopadhyay A. Bone cell-materials interaction and Ni ion release of anodized equiatomic NiTi alloy. Acta Biomater. 2011;7:1902–12.

    Article  CAS  Google Scholar 

  10. Fushimi K, Startmann M, Hassel A. Electropolishing of NiTi shape memory alloys in methanolic H2SO4. Electrochim Acta. 2006;52:1290–5.

    Article  CAS  Google Scholar 

  11. Rokicki R, Hryniewicz T. Nitinol surface finishing by magnetoelectropolishing. Trans Inst Metal Finish. 2008;86(5):280–5.

    Article  CAS  Google Scholar 

  12. Hryniewicz T, Rokicki R, Rokosz K. Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surf Coat Technol. 2009;203(10–11):1508–15.

    Article  CAS  Google Scholar 

  13. Hryniewicz T, Rokosz K, Rokicki R. Surface investigation of NiTi rotary endodontic instruments after magnetoelectropolishing. MRS proceedings of the 18th international materials research congress, 9 on biomaterials, Cancun, Mexico, 16–20 August 2009. 2009;244E:21–32. ISBN 978-1-60511-221-3. http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=24949&DID=280254.

  14. Hryniewicz T, Rokosz K, Rokicki R. Magnetoelectropolished titanium biomaterial, in biomaterials science and engineering. Chapter 11. In: Rosario Pignatello, editor. ISBN 978-953-307-609-6, InTech, 2011; 227–248. http://www.intechweb.org/, http://www.intechopen.com/articles/show/title/magnetoelectropolished-titanium-biomaterial.

  15. Quinones R, Gawalt ES. Study of the formation of self-assembled monolayers on nitinol. Langmuir. 2007;23(20):10123–30.

    Article  CAS  Google Scholar 

  16. Lifeng Z, Yan H, Dayun Y, Xiaoying L, Tingfei X, Deyuan Z, Ying H, Jinfeng Y. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys. Biomed Mater. 2011;6:0250012 (12pp).

    Google Scholar 

  17. Schmehl JM, Harder C, Wendel HP, Claussen CD, Tepe G. Silicon carbide coating of nitinol stents to increase antitrombogenic properties and reduce nickel release. Cardiovasc Revasc Med. 2008;9(4):255–62.

    Article  Google Scholar 

  18. Bakhshi R, Darbyshire A, Evans JE, You Z, Lu J, Seifalian AM. Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer. Colloids Surf B. 2011;86(1):93–105.

    Article  CAS  Google Scholar 

  19. Wu W, Liu X, Han H, Yang D, Lu S. Electropolishing of NiTi for improving biocompatibility. J Mater Sci Technol. 2008;24(6):926–30.

    CAS  Google Scholar 

  20. Rokicki R. Method for surface inclusions detection in nitinol which are primary corrosion and fatigue initiation sites and indicators of overall quality of nitinol material. US Patent Application number: 2010, 0274077. http://www.faqs.org/patents/app/20100274077.

  21. Rokicki R. Detecting nitinol surface inclusions. Mater Device Diagn Ind. 2010;32(2):44–8.

    Google Scholar 

  22. Nitinol Devices & Components Inc. http://www.qmed.com/supplier/nitinol-devices-components.

  23. Talysurf CCI 6000—The world’s largest resolution automated optical 3D profiler. Brochure, Taylor Hobson, 2005.

  24. Bour H, Nicolas JF, Garrigue JL, Demiden A, Schmitt D. Establishment of nickel specific T cell lines from patients with allergic contact dermatitis: comparison of different protocols. Clin Immunol Immunopatol. 1994;73:142–5.

    Article  CAS  Google Scholar 

  25. Firstov G, Votchev R, Kumar H, Blanpain B, van Humbeeck J. Surface oxidation of NiTi shape memory alloys. Biomaterials. 2002;23:4863–71.

    Article  CAS  Google Scholar 

  26. Trepanier C, Zhu L, Fino J, Pelton AR. Corrosion resistance of oxidized nitinol. In: Pelton AR, Duerig T, editors. SMST-2003 proceeding of the international conference shape memory and superelastic technologies, 5–8 May 2003. SMST Society Inc. Asilomar Conference Center, Pacific Grove.

  27. Hryniewicz T, Rokosz K. On the wear inspection and endurance recovery of nitinol endodontic files. PAK (Measurement Automation and Monitoring). 2009;55(4):247–50.

    Google Scholar 

  28. Haider W, Munroe N. Assessment of corrosion resistance and metal ion leaching of nitinol alloys. J Mater Eng Perform. 2011;20(4):812–5.

    Article  CAS  Google Scholar 

  29. Shabalovskaya SA, Tian H, Anderegg JW, Dominique U, Schryvers U, Carroll WU, van Humbeeck J. The influence of surface oxides on the distribution and release of nickel from nitinol wires. Biomaterials. 2009;30:468–77.

    Article  CAS  Google Scholar 

  30. Rokicki R. The passive oxide film on electropolished titanium. Metal Finish. 1990;88(2):69–70.

    CAS  Google Scholar 

  31. Webb K, Hlady V, Tresco PA. Relative importance of surface wettabillity and charged functional groups on NIH 3T3 fibroblast attachment, spreading and cytoskeletal organization. J Biomed Mater Res. 1998;41:422–30.

    Article  CAS  Google Scholar 

  32. ISO/TS 11139:2006. Sterilization of health care products—vocabulary, 2006.

  33. Lambert BJ, Mendelson TA, Craven MD. Review: radiation and ethylene oxide terminal sterilization experiences with drug eluting stent products. AAPS Pharm Sci Tech. 2011;12(4):1116–26.

    Article  CAS  Google Scholar 

  34. Shabalovskaya SA, Anderegg J, van Humbeeck J. Review: critical overview of nitinol surfaces and their modifications for medical applications. Acta Biomater. 2008;4:447–67.

    Article  CAS  Google Scholar 

  35. Shabalovskaya SA. Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Biomed Mater Eng. 2002;12(1):69–109.

    CAS  Google Scholar 

  36. Thierry B, Tabrizian M, Savadogo O, Yahia L. Effect of sterilization processes on NiTi alloy: surface characterization. J Biomed Mater Res. 2000;49:88–98.

    Article  CAS  Google Scholar 

  37. Guidline for disinfection and sterilization in healthcare facilities, 2008, Department of Health & Human Services, USA.

  38. Praisarnti C, Chang JWW, Cheung GSP. Electropolishing enhances the resistance of nickel-titanium rotary files to corrosion fatigue failure in hypochlorite. J Endod. 2010;36:264–7.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Orthopaedic Research Laboratory, Buffalo, NY for cell culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Hryniewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rokicki, R., Haider, W. & Hryniewicz, T. Influence of sodium hypochlorite treatment of electropolished and magnetoelectropolished nitinol surfaces on adhesion and proliferation of MC3T3 pre-osteoblast cells. J Mater Sci: Mater Med 23, 2127–2139 (2012). https://doi.org/10.1007/s10856-012-4696-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4696-1

Keywords

Navigation