Skip to main content
Log in

Effect of anchoring atom and electrostatic gating on the electronic transport properties in single molecular electronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of anchoring atom and electrostatic gate on the electron transport through gated thiophene single molecular device is studied by utilizing non-equilibrium Green’s function coupled with self-consistent extended Huckel theory. Gated gold–molecule–gold junctions are built using thiophene (Tp) molecule as functional component and sulphur (S) and selenium (Se) as anchoring atoms in field effect transistor (FET) configuration. The electron transport analysis of the gated thiophene single molecular device is investigated through the current–voltage and the electron transmission spectra. The results show that the anchoring atoms modulate the transport nature of these devices in a controlled manner. We find that the S–Tp–S device produces larger current than Se–Tp–Se device. Also we studied the effect of electrostatic gating on S–Tp–S and Se–Tp–Se device. We find that, positive bias or negative bias for Vg, will correspondingly, raise or lower the transmission coefficients T(E) in relation to the Fermi level (EF) for both the devices. Our results show that magnitude of Isd current varies more than one order for same Vsd over different Vg bias for S–Tp–S device, whereas for Se–Tp–Se device Isd current varies more than five times for same Vsd over different Vg bias. Se–Tp–Se device shows gate controlled NDR behavior. Finally, we demonstrated the application of using thiophene based single molecular FET to realize five basic logic gates very low Vsd bias. The key feature of the suggested design is the opportunity of demonstrating various logic gates with just one molecular unit transistor and demonstrated at very low Vsd bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.E. Moore, Electronics 38, 114 (1965)

    Google Scholar 

  2. B. Hoefflinger, Chips 2020 (Springer, Berlin, 2011), pp. 161-174

    Book  Google Scholar 

  3. A. Aviram, M.A. Ratner, Chin. Phys. Lett. 29, 277 (1974)

    Article  Google Scholar 

  4. C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)

    Article  Google Scholar 

  5. J. Yao, Y. Li, Z. Zou, H. Wang, Y. Shen, Superlattices Microstruct. 51, 396 (2012)

    Article  Google Scholar 

  6. H. Song, Y. Kim, Y.H. Jang, H. Jeong, M.A. Reed, T. Lee, Nature 462, 1039 (2009)

    Article  Google Scholar 

  7. K. Xiao, Y. Liu, T. Qi, W. Zhang, F. Wang, J. Gao, W. Qiu, Y. Ma, G. Cui, S. Chen, X. Zhan, J. Am. Chem. Soc. 127, 13281 (2005)

    Article  Google Scholar 

  8. B. Xu, X. Xiao, X. Yang, L. Zang, N. Tao, J. Am. Chem. Soc. 127, 2387 (2005)

    Google Scholar 

  9. W. Jing, L. Yun-Ye, C. Hao, W. Peng, R. Note, H. Mizuseki, Y. Kawazoe, Chin. Phys. Lett. 27, 067303 (2010)

    Article  Google Scholar 

  10. A. Mahmoud, P. Lugli, J. Appl. Phys. 116, 204504 (2014)

    Article  Google Scholar 

  11. Y. Xu, B. Cui, G. Ji, D. Li, D. Liu, Phys. Chem. Chem. Phys. 15, 832 (2013)

    Article  Google Scholar 

  12. S.M. Kang, Y. Leblebici, CMOS Digital Integrated Circuits Analysis Design, 4th edn. (McGraw-Hill, USA, 2002)

    Google Scholar 

  13. J.M. Wang, S.C. Fang, W.S. Feng, IEEE J. Solid State Circuits 29, 780 (1994)

    Article  Google Scholar 

  14. Y. Xu, C. Fang, B. Cui, G. Ji, Y. Zhai, D. Liu, Appl. Phys. Lett. 99, 043304 (2011)

    Article  Google Scholar 

  15. X.Y. Feng, Z. Li, J. Yang, J. Phys. Chem. C 113, 21911 (2009)

    Article  Google Scholar 

  16. M.J. Li, H. Xu, K.Q. Chen, M.Q. Long, Phys. Lett. A 376, 1692 (2012)

    Article  Google Scholar 

  17. W.W. Cheng, Y.X. Liao, H. Chen, R. Note, H. Mizuseki, Y. Kawazoe, Phys. Lett. A 326, 412 (2004)

    Article  Google Scholar 

  18. S. Sen, S. Chakrabarti, Comput. Mater. Sci. 4, 889 (2009)

    Article  Google Scholar 

  19. C.P. Kala, P.A. Priya, D.J. Thiruvadigal, J. Comput. Theor. Nanosci. 10, 213 (2012)

    Article  Google Scholar 

  20. Y. Luo, C.K. Wang, Y. Fu, Chem. Phys. Lett. 369, 299 (2003)

    Article  Google Scholar 

  21. C.P. Kala, P.A. Priya, D.J. Thiruvadigal, Commun. Theor. Phys. 59, 649 (2013)

    Article  Google Scholar 

  22. R.N. Wang, X.H. Zheng, Z.X. Dai, H. Hao, L.L. Song, Z. Zeng, Phys. Lett. A 375, 657 (2011)

    Article  Google Scholar 

  23. S. Jalili, R. Ashrafi, Phys. E 43, 960 (2011)

    Article  Google Scholar 

  24. F. Zahid, M. Paulsson, E. Polizzi, A.W. Ghosh, L. Siddiqui, S. Datta, J. Chem. Phys. 123, 064707 (2005)

    Article  Google Scholar 

  25. ATOMISTISTIX TOOLKIT version 12.8.2, Quantum Wise A/S (www.quantumwise.com)

  26. D.Q. Andrews, G.C. Solomon, R.P. Van Duyne, M.A. Ratner, J. Am. Chem. Soc. 130, 17309 (2008)

    Article  Google Scholar 

  27. H. Fang, R.Z. Wang, S.Y. Chen, M. Yan, X.M. Song, B. Wang, Appl. Phys. Lett. 98, 082108 (2011)

    Article  Google Scholar 

  28. M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2008)

    Article  Google Scholar 

  29. K. Stokbro, D.E. Petersen, S. Smidstrup, A. Blom, M. Ipsen, K. Kaasbjerg, Phys. Rev. B 82, 075420 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Department of Science and Technology, Government of India. This work was supported by a grant from DST-FIST, Govt. of India (Grant Ref. No SR/FST/PSI-010/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. John Thiruvadigal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariharan, R.M., Thiruvadigal, D.J. Effect of anchoring atom and electrostatic gating on the electronic transport properties in single molecular electronic devices. J Mater Sci: Mater Electron 28, 601–609 (2017). https://doi.org/10.1007/s10854-016-5564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5564-4

Keywords

Navigation