Skip to main content

Advertisement

Log in

Electrical and transport properties of nickel manganite obtained by Hall effect measurements

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Intrinsic resistivity and carrier transport parameters of sintered nickel manganite samples (NTC thermistor grade) were determined using a Hall effect measurement system based on the van der Pauw method. Powder mixtures composed of MnO, NiO and with small amounts of CoO and Fe2O3 were free surface energy activated by milling in an ultra fast planetary mill for 5, 15, 30, 45 and 60 min. The powders were uniaxially pressed with 196 MPa into discs and sintered at 1200 °C for 60 min. Full characterization of nickel manganite samples was done using SEM, EDS and XRD analysis. The Hall effect was measured at different temperatures (room temperature, 50, 80, 100 and 120 °C) with an applied field of 0.37 T and also 0.57 T at room temperature. The activation energy E a (energy of conduction) and the coefficient of temperature sensitivity B 25/80, were calculated from measured resistivity values. The measured mobility, resistivity/conductivity, U-I plots, and Hall coefficients were mutually compared and correlated versus microstructure development and macroscopic parameters such as the powder activation time and ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O.S. Aleksić, P.M. Nikolić, M.N. Simić, V.Ž. Pejović, D.G. Vasiljević-Radović, Advanced Science and Technology of Sintering (Plenum Pub, 1999), p. 425

  2. H.B. Sachse, Semiconducting Temperature Sensors and Their Applications. (Wiley, New York, 1975)

    Google Scholar 

  3. O.S Aleksić, S.M. Savić, M.D. Luković, K.T. Radulović, V.Z. Pejović, Mater. Sci. Forum 518, 247 (2006)

    Article  Google Scholar 

  4. M.L. Singla, S. Sharma, B. Raj, V.R. Harchekar, Sens. Actuators A 120, 337 (2005). doi:10.1016/j.sna.2004.12.014

    Article  CAS  Google Scholar 

  5. P. Umadevi, C.L. Nagendra, Sens. Actuators A 96, 114 (2002). doi:10.1016/S0924-4247(01)00776-2

    Article  Google Scholar 

  6. N. Ueda, T. Omata, N. Hikuma, K. Ueda, H. Mizoguchi, T. Hashimoto, H. Kawazoe, Appl. Phys. Lett. 61, 1954 (1992). doi:10.1063/1.108374

    Article  ADS  CAS  Google Scholar 

  7. E.D. Macklen, Thermistors (Electrochem Pub, Glasgow, 1979) pp. 5–11

  8. K. Park, J. Am. Ceram. Soc. 88, 862–866 (2005). doi:10.1111/j.1551-2916.2004.00170.x

    Article  CAS  Google Scholar 

  9. A. Rousset, R.L. Legros, A. Lagrange, J. Eur. Ceram. Soc. 13, 185 (1994). doi:10.1016/0955-2219(94)90027-2

    Article  CAS  Google Scholar 

  10. V.A.M. Brabers, J.C.J.M. Terhell, Phys. Status Solidi A 69, 325 (1982)

    Article  CAS  Google Scholar 

  11. G. Ashcroft, I. Terry, R. Gover, J. Eur. Ceram. Soc. 26, 901 (2006). doi:10.1016/j.jeurceramsoc.2004.11.023

    Article  CAS  Google Scholar 

  12. E.S. Na, U.G. Paik, S.C. Choi, J. Ceram. Proc. Res. 2, 31 (2001)

    Google Scholar 

  13. H. Altenburg, O. Mrooz. J. Plewa, O. Shpotyuk, M. Vakiv, J. Eur. Ceram. Soc. 21, 1787 (2001). doi:10.1016/S0955-2219(01)00116-9

    Article  CAS  Google Scholar 

  14. S. Asbrink, A. Waskowska, M. Drozd, E. Talik, J. Phys.Chem. Solids 58, 725 (1997). doi:10.1016/S0022-3697(96)00198-9

    Article  ADS  CAS  Google Scholar 

  15. P.N. Lisboa-Filho, M. Bahout, P. Barahona, C. Moure, O. Peña, J. Phys. Chem. Solids 66, 1206 (2005). doi:10.1016/j.jpcs.2005.03.001

    Article  ADS  CAS  Google Scholar 

  16. S.M. Savić, O.S. Aleksić, M.V. Nikolić, D.T. Luković, V.Ž. Pejović, P.M. Nikolić, Mater. Sci. Eng. B 131, 216 (2006). doi:10.1016/j.mseb.2006.04.035

    Article  CAS  Google Scholar 

  17. M.V. Nikolić, K.M. Paraskevopoulos, O.S. Aleksić, T.T. Zorba, S.M. Savić, V.D. Blagojević, D.T. Luković, P.M. Nikolić, Mater. Res. Bull. 42, 1492 (2007). doi:10.1016/j.materresbull.2006.11.005

    Article  CAS  Google Scholar 

  18. S.M. Savić, O.S. Aleksić, P.M. Nikolić, D.T. Luković, Sci. Sinter. 38, 223 (2006). doi:10.2298/SOS0603223S

    Article  CAS  Google Scholar 

  19. A. Rougier, S. Soiron, I. Haihal, L. Aymard, B. Taouk, J.-M. Tarascon, Powder Technol. 128, 139 (2002). doi:10.1016/S0032-5910(02)00191-2

    Article  CAS  Google Scholar 

  20. N.G. Galkin, D.L. Goroshko, A.V. Konchenko, E.S. Zakharova, S.T.S. Krivoshchapov, Semiconductors 34, 799 (2000). doi:10.1134/1.1188076

    Article  ADS  CAS  Google Scholar 

  21. T.S. Kayed, N. Calinli, E. Aksu, H. Koralay, A. Günen, I. Ercan, S. Aktürk, S. Cavdar, Cryst. Res. Technol. 39, 1063 (2004). doi:10.1002/crat.200410291

    Article  CAS  Google Scholar 

  22. H. Khosroabadi, V. Daadmehr, M. Akhavan, Physica C 384, 169 (2003). doi:10.1016/S0921-4534(02)01876-2

    Article  ADS  CAS  Google Scholar 

  23. G. Ilonca, F. Beiusan, A.V. Pop, I. Matei, E. Macocain, T.R. Yang, Int. J. Mod. Phys. B 18, 3057 (2004). doi:10.1142/S0217979204026275

    Article  ADS  CAS  Google Scholar 

  24. C.S. Hsieh, K. Schröder, J. Appl. Phys. 79, 6522 (1996). doi:10.1063/1.361932

    Article  ADS  CAS  Google Scholar 

  25. T. Taniguchi, T. Yamazaki, K. Yamanaka, Y. Tabata, S. Kawarazaki, J. Magn. Magn. Mater. 310, 1526 (2007). doi:10.1016/j.jmmm.2006.10.666

    Article  ADS  CAS  Google Scholar 

  26. K-H. Seo, D.-H. Park, J.-H. Lee, J.-J. Kim, Solid State Ionics 177, 601 (2006). doi:10.1016/j.ssi.2005.12.020

    Article  CAS  Google Scholar 

  27. J.D. Gething, A.J. Matthews, A. Usher, M.E. Portnoi, K.V. Kavokin, Int. J. Mod. Phys. B 18, 3537 (2004). doi:10.1142/S0217979204026962

    Article  ADS  CAS  Google Scholar 

  28. E. Fradkin, S.A. Kivelson, Phys. Rev. B 59, 8065 (1999). doi:10.1103/PhysRevB.59.8065

    Article  ADS  CAS  Google Scholar 

  29. K. Park, D.Y. Bang, J. Mater. Sci.: Mater. Electron. 14, 81 (2003)

    Article  CAS  Google Scholar 

  30. Y. Abe, T. Meguro, T. Yokoyama, T. Morita, J. Tatami, K. Komeya, J. Ceram. Proc. Res. 4, 140 (2003)

    Google Scholar 

  31. P.J. Freud, Phys. Rev. Lett. 29, 1156 (1972). doi:10.1103/PhysRevLett.29.1156

    Article  ADS  CAS  Google Scholar 

  32. J. Töpfer, A. Feltz, P. Dordor, J.P. Doumerc, Mater. Res. Bull. 29, 225 (1994). doi:10.1016/0025-5408(94)90017-5

    Article  Google Scholar 

Download references

Acknowledgement

We would like to express our gratitude to Dr Goran Branković for SEM measurements. This work was performed as part of project 6150B financed by the Ministry for Science of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Savić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savić, S.M., Stojanović, G.M., Nikolić, M.V. et al. Electrical and transport properties of nickel manganite obtained by Hall effect measurements. J Mater Sci: Mater Electron 20, 242–247 (2009). https://doi.org/10.1007/s10854-008-9710-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9710-5

Keywords

Navigation