
INVITED VIEWPOINT

Invited viewpoint: teaching programming to students

in physical sciences and engineering

Lloyd Cawthorne1,*

1Department of Physics and Astronomy, University of Manchester, M13 9PL Manchester, UK

Received: 12 May 2021

Accepted: 18 July 2021

Published online:

5 August 2021

� The Author(s) 2021

ABSTRACT

Computer programming is a key component of any physical science or engi-

neering degree and is a skill sought by employers. Coding can be very appealing

to these students as it is logical and another setting where they can solve

problems. However, many students can often be reluctant to engage with the

material as it might not interest them or they might not see how it applies to

their wider study. Here, I present lessons I have learned and recommendations

to increase participation in programming courses for students majoring in the

physical sciences or engineering. The discussion and examples are taken from

my second-year core undergraduate physics module, Introduction to Pro-

gramming for Physicists, taught at The University of Manchester, UK. Teaching

this course, I have developed successful solutions that can be applied to

undergraduate STEM courses.

Introduction: why is teaching
programming difficult?

Why is teaching programming difficult? More

specifically, why is it difficult for science and engi-

neering students in fields other than computer sci-

ence? We, academics in these fields, recognise it as an

indispensable tool in our day-to-day work, whilst

students can often see it as a chore. For instance, I

recall one student saying to me: ‘‘I get that program-

ming is useful, but I came here to study physics’’; they did

not see programming as a means to study for their

degree. This disconnect is often present early in a

course whilst we introduce programming and the

language we are working in before we can apply it to

meaningful situations. In other words,

print(’Hello World!’) does not help me solve

the Schrödinger equation(!)

In this viewpoint, I will first outline more formally

why there is a difficulty teaching programming and

present recommendations to remedy this. These are

justified in Sect. 2 which is split into four: mastery of

syntax and debugging error messages, context to

learning activities, diversity and careers, and teach-

ing and assessing programming style. I then com-

ment on the details on how you might deliver an

introductory programming course before

Handling Editor: Christopher Blanford.

Address correspondence to E-mail: lloyd.cawthorne@manchester.ac.uk

https://doi.org/10.1007/s10853-021-06368-1

J Mater Sci (2021) 56:16183–16194

Invited Viewpoint

http://orcid.org/0000-0002-3373-5682
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-021-06368-1&domain=pdf
https://doi.org/10.1007/s10853-021-06368-1

summarising. A glossary of terms used in this

viewpoint can be found in Table 1. Throughout we

have added reflections on teaching this subject dur-

ing the global pandemic. I encourage you, the reader,

to reflect if any of these recommendations would

benefit your course. In some cases they might not;

they might not even be logistically possible.

A typical introductory programming course will

assess students by having them complete course-

work. So students are assessed on their ability to

apply programming to solve problems. They are not

assessed on their surface-level knowledge of pro-

gramming. Therefore, for a student to do well, they

must quickly apply abstract ideas to perform tasks

[1]. To do this, there are a number of non-trivial skills

they need to gain fluency in: they need to master the

syntax of the language they are working in, they must

recognise common error messages and how to fix

them, they need to be able to break down a larger

task into smaller blocks which can be performed by

code.

Learning the above skills might not naturally be

appealing to, say, a physics student who has dreams

of researching matter-antimatter asymmetry. Alone

these skills are not exciting, but the problems that

they can solve are. As course leaders, we must set the

expectations of students such that they recognise the

importance of programming in the wider context of

the field.

Another aspect we must bear in mind is that there

is significant variation in ability. Some students will

enter their degree with industrial experience in pro-

gramming whilst the majority are novices in this

field. As an instructor, it is non-trivial to manage this

and create activities suitable for all. Our prime focus

must lie on the novices, whilst we direct the

advanced students to further reading where possible.

Finally, we must recognise that the majority of

students we are teaching will not enter research

careers and are likely not minded to do the extra

practice required to master the material. This is a

reflection of academic, or engaged, students versus

the nonacademic, or non-engaged, students (there is

ample discussion on these two groups in Biggs and

Tang referred to as ‘‘Susans’’ and ‘‘Roberts’’ [2]). In

programming, however, it is expected that students

will emerge from their degree with the ability to use

computing to support or drive their work. (This is

indeed part of the accreditation for a physics degree

in the UK [3].) Furthermore, we, educators at higher

education institutions, have a sizeable role in

addressing the digital skills crisis [4–6]. To that end,

following this introductory course, we expect stu-

dents to update their CV to include skills in pro-

gramming. For the majority of students, this will be

their only formal teaching of programming.

A summary of my suggestions is found in Fig. 1.

Some of these are common practice, though, if you

are preparing a new course, be mindful that some

require significant planning.

Solutions

Mastery of syntax and debugging error
messages

Before any worthwhile coding activities can be done,

students must gain fluency in the language they are

working in. This alone can be daunting to novices as

they are unfamiliar with how arbitrary syntax can be

[7]. Once they have gained confidence they then need

time and activities to work in this language, there-

fore, use only one programming language in intro-

ductory courses [8]. The language taught should have

minimal distracting syntax.

Table 1 Glossary of terms in this viewpoint

Control flow The order in which individual statements or definitions are executed.

Currying In computer science, defining a function within a function.

IDE Integrated development environment, software that supports code development.

Jupyter A community that develops open-source software to support interactive data science and scientific computing.

Linter A tool that flags programming bugs, stylistic errors and suspicious constructs.

Notebook An interface used for literate programming; mixes code results, graphics, text, and more.

Scope The visibility of a variable or method to different parts of a programme.

Spyder An open-source IDE for scientific programming in Python.

16184 J Mater Sci (2021) 56:16183–16194

With these aspects in mind, we will give examples

in Python, a language which has a design philosophy

that emphasises code readability. Furthermore, the

popularity of Python has surged in both industry and

research [9, 10]. Despite being a high-level language,

a great deal of work has been done to enable it to

perform tasks that were previously only achievable in

C (or a similar lower-level language) [11]. As an

instructor, we can be confident that teaching Python

over Java, C or C?? will not hinder our students

later in their career.

Together with the syntax of the language, there are

a handful of basic concepts that need to be covered

early on: variable types, control flow and variable

scope. The concept of scope is the most abstract and

hence requires highlighting in many different exam-

ples. Limited content on how the machine interprets

code and handles data needs to be taught in an

introductory course. Working in Python, this could

be restricted to how different variables are repre-

sented in binary, which could be expanded to

rounding and overflow errors.

To teach the basic concepts above, we suggest

diverging slightly from the commonly held approach

of programming is best learnt by programming. We do

not disagree with this ethos, just suggest a different

form of learning activity should take place at the start

which is more suited to non-specialist (or less moti-

vated) students. That is to create learning activities

focused on debugging errors. I have done this by

creating quizzes. This was chosen to automate the

marking process and facilitate remote learning. This

was driven by increasing class size (300? students) to

enable support to be concentrated for those most in

need, though it is also well suited for delivery amidst

the pandemic. I deliver the quizzes through regular

tests on our virtual learning environment (VLE):

BlackBoard. These are weekly to begin with, so stu-

dents can build their confidence, then taper so stu-

dents can concentrate on their assignments. The quiz

questions themselves typically consist of a variety of

multiple choice, multiple answer and matching

questions. The latter, where students need to cor-

rectly pair question and answer items, is very

versatile.

• Use only one programming language in introductory courses.

• Choose a language like Python that has minimal distracting syntax.

• Create early learning activities focused on debugging.

• Present many examples in a context relevant to the students’ field.

• Create tasks and assignments that are directly transferable to other areas of study.

• When demonstrating code, provide students with prewritten code that they can edit.

• Formalise a programming style and support this with a style guide that includes exam-
ples.

• Formalise how style is marked.

• Include some open-ended assessment.

• Showcase historical figures to change impressions of what a computer scientist should
look like.

• Highlight career paths and increased employability that comes from coding ability.

• Employ one teaching assistant for every 15–20 students in a computer-based laboratory
session.

• Give teaching assistants enough time to review the weekly content and prepare for the
laboratory session.

• Create summaries of each week’s content and make them accessible to teaching assis-
tants.

Figure 1 Tips for teaching

programming to science and

engineering students not on a

computer science course.

J Mater Sci (2021) 56:16183–16194 16185

For all of the quizzes, we provide two versions to

students: a practice version and an assessed version.

Students are allowed unlimited attempts in the

practice version so that they can gain familiarity with

the questions and the specific answers they require,

and also get automated feedback. The assessed ver-

sion can only be done once and there are question

pools to reduce collusion. The possibility of collusion

cannot be removed entirely in these tasks, a point that

must be accepted by the course leader. The difficulty

of the assessed version must be less than or equal to

the practice test.

An example of a quiz question is presented in

Fig. 2, where students need to select the correct order

of the three lines of code, thus reinforcing the concept

of control flow. This question encourages novices to

check their result by running the code. Later, the

question can be expanded upon to decide the order in

which three functions should be called. Another

example is given in the supporting information

(week_2_doppler_practice.py) where students

need to debug basic syntax errors. I present this

problem to students soon after they have been

introduced to functions. I intend for them to use the

IDE’s error flagging to solve it. There are a number of

aspects to this question that support novices. Firstly,

it simply reinforces the syntax associated with func-

tions. Secondly, it does this in a way where the code

is broken in a specific way; we have concentrated

what we want them to focus on in this particular task.

Thirdly, as the code is given as broken, the student

cannot assign any blame to themselves or question

their ability as it was not broken by them. Finally, it

simply introduces a different example of using

functions, namely a function being called in the

argument of another. Here, the students are instruc-

ted how many errors they need to fix to assist them.

If the student had to write the code from scratch—

the traditional approach—then they would likely

make these same errors but now get frustrated at

their own ability, disengaging them from the topic.

There would also be instances of them generating

unseen errors which they would struggle to debug at

this stage.

From this point in my lectures, I start introducing

questions where the IDE will not flag the errors. This

change requires students to test the code by including

useful print statements or running a debugger. An

example of such a problem is presented in given in

the supporting information, week_3_tri-

bonacci_practice.py, where students need to

debug code that finds members of the tribonacci

sequence (a variant of the Fibonacci sequence). The

errors are such that students reinforce their knowl-

edge of syntax and start to build wider problem-

solving skills for when code invariably does not work

as intended. Here, students complete the question by

matching inputs to given possible outputs. The input

numbers are chosen such that there are a couple they

can check by hand and a couple where they will need

the code to run correctly. These also include edge

cases. Note we do not tell students how many errors

they need to find here to encourage them to be con-

fident with their work before continuing, i.e. checking

their answer is correct for small numbers.

Alongside the quizzes, we also provide a simple

introductory assignment for them to write from

scratch. We give week-by-week guidance on what

they should be able to complete to ensure that they

are applying the weekly content appropriately. As

stated earlier, the traditional approach of learn by

doing is not removed; however it is no longer the

primary focus whilst students build their core skills.

Context to learning activities

Students must apply any new skill in new settings

outside of the course to embed its learning and for it

to develop after their formal instruction is complete.

It is unlikely they will be doing this during the

course; however, material can still be provided to try

and encourage this. Following the course, if students

Figure 2 Example multiple choice quiz question where students need to select the correct order of the code lines from different

permutations of ABC. It is given as part of a BlackBoard quiz.

16186 J Mater Sci (2021) 56:16183–16194

are not continuing to apply programming in their

degree, then the course has failed its purpose. It is

naı̈ve for us to assume that students will naturally see

how programming can translate to their wider stud-

ies. Instead, we must make that link explicit. To do

this, one should present many examples in a context

relevant to the field and create tasks and assignments

that are directly transferable to other areas of study.

An example of how this has been done for a first year

course as part of a material science degree has been

shared by Prof. Quinta da Fonesca and Dr. Race; this

can be found in [12]. Early on, making this link is as

simple as presenting code that performs short cal-

culations relevant to the field, see Fig. 2. Later these

need to be more meaningful and useful. For instance,

in a parallel course, students are taught about Fourier

series approximations, well we can show them how

these can be visualised with code. We can implement

this in a quiz question where the emphasis is on them

exploring plotting options rather than having to

debug or write code. Students are presented with a

plot, see Fig. 3; some skeleton code, (see

week_8_intro_to_plotting.py in the support-

ing information), and various plot options. So, in this

quiz question, we are showcasing a variety of plot-

ting options and also demonstrating wider applica-

bility in other courses. We then hope students

recognise that they could amend this code, or write

their own, to study similar problems in future.

Throughout the students’ degree, they will be

exposed to other examples of programming from

different authors. Undoubtedly these will be written

in different styles and perhaps even different lan-

guages. This issue will vary depending on discipline

and therefore creating uniformity is beyond the scope

of this article. However, being exposed to code in

these settings will strengthen the idea that program-

ming is a core skill in science and engineering.

These examples, seen in quizzes and lectures, may

not offer enough incentive for a student to continue

practising after the course. If we want students to use

programming post-instruction, then one must think

of what skills are most immediately valuable to them;

we must constructively align assessment to the pro-

gramme-level learning outcomes. We, academics,

might write code for a variety of purposes. These

range from long, well documented and versatile

scripts that will be seen by large collaborations; to

short and rough calculations or checks that are for

our use only. There could be debate about which

extreme to concentrate on. I feel there is more merit in

teaching the former as it assists marking and sup-

ports the student in any project work. Furthermore, a

recent graduate that can provide polished examples

would stand out to a potential employer.

In the context of a science and engineering degree,

their programming skills are directly applicable to

their laboratory work where they are organising, fil-

tering, manipulating, visualising and fitting data. So,

we give them a final assignment where they have to

validate and combine data sets to perform a min-

imised v2 fit on two parameters. The data sets include

trivial errors along with some outliers that require

some statistical justification to remove. If students

implement these skills in their laboratory work they

obtain high marks, and they are told this repeatedly.

That final aspect of communication is key. Applying

these skills in the laboratory, students will encounter

new problems, or want the code to produce some-

thing slightly different, and they will have to fig-

ure this out themselves. This is the approach that all

of us use when coding. For our course in Manchester,

this desired outcome was witnessed by the laboratory

tutor.

‘‘[T]here was some very impressive analyses by

a good number of the students in the second

semester this year utilising nonlinear curve fit-

ting that they must have learned from your

course which was great to see (and a good way

of earning the top mark for analysis)’’.

(2nd year lab tutor)

Figure 3 Sixth-order Fourier approximation of the sawtooth

function. Demonstrates many useful plotting options.

J Mater Sci (2021) 56:16183–16194 16187

Furthermore, these tasks that are aligned with their

wider studies can be framed with contexts that could

enthuse the students. For instance, in my department,

we have used examples looking at determining the

mass of exoplanets, finding the decay constants of

exotic nuclei, finding the width of a material through

quantum tunnelling, etc. These can help give the

project some meaning and application. This guise

could also be what is needed to motivate some

students. For many, this will be the first research-like

project they have done and they will become

engrossed in it. In this case, we might encounter the

opposite problem where students are spending more

time than it is worth on their project. To counter this,

we could give guidance on how much time they

should be devoting to it and recognising that the

longer they work on it, the fewer additional marks

they gain.

Diversity and careers

Like many fields in STEM, computer science lacks

engagement from underrepresented groups which in

turn fosters a damaging preconception about what a

computer scientist should look like [13, 14]. These

issues are societal and it will take far more than an

introductory course to address them. However,

instructors can be mindful of these problems in our

delivery. Specifically, we can showcase historical

figures in computer science and computational sci-

ence and highlight potential career paths.

Spending a few minutes each week on these topics

can have a significant positive effect on students’

perceptions of the field. Moreover, it actively coun-

ters any erroneous prejudices about who can be a

programmer. There are many figures worthy of our

attention. For instance: Ada Lovelace, Douglas Har-

tree, Alan Turing, Gladys West, Donald Knuth, Grace

Hopper, etc. Here, it is worth commenting further

about the person and not just their contributions. It

might be that a student is indifferent to Lovelace’s

development of the first programme, but the complex

relationship she had with her mother could resonate.

Or discussing the institutional homophobia that

Turing was subjected to. Or, more light-heartedly,

Knuth’s eccentricity to finish The Art of Computer

Programming.

When highlighting these people, we naturally dis-

cuss a broad range of applications demonstrating the

versatility of the field. Students can then recognise

potential career paths which for some is needed to

boost motivation. As an example, this year I dis-

cussed the protein folding problem and how it was

solved with AI [15]. Students were then surprised to

learn that working on projects like this is accessible to

them in future.

Below is some written feedback from students

when asked about what they found most helpful and

what helped them feel part of a learning community.

‘‘I especially liked the segment where he told us

about prominent people in computer

science/physics’’.

(Anon.)

‘‘I loved the ‘‘5 minutes of history’’ part of the

synchronous sessions’’.

(Anon.)

These recommendations are not restricted to pro-

gramming and should be common place throughout

a STEM degree as stated by the Institute of Physics

[16].

Teaching and assessing programming style

In a course that concentrates on programming (rather

than the application of it in a topic), it is not

uncommon to include some discussion and some

assessment on coding style. This forces students to

reflect on what they have written and encourages

good habits (or discourages bad ones) [17, 18].

Additionally, as a demonstrator or marker, having

code written in a clear style makes these tasks much

easier. As articulated by van Rossum:

‘‘Code is read much more often than it is

written’’.

(Guido van Rossum - Author of Python)

We have implemented this by marking style on par

with output. This approach might not suit all courses,

but we feel this is an important aspect of coding and

should be considered as part of the intended learning

outcomes. To implement this, one should formalise

the style, provide a style guide that includes exam-

ples, and formalise how this is marked.

The above suggestions are not revolutionary.

However, with large class sizes, you should expect to

see great variation in approach and need to consider

carefully what deserves merit and what should be

penalised. Furthermore, students will need to

16188 J Mater Sci (2021) 56:16183–16194

understand their mark if they have done something

ill-advised. For instance, if you come across an

instance of currying (i.e. defining a function within a

function), is this a student that has expertise in

functional programming or is this a novice who has

not understood scope? It is far easier to mark if these

decisions have already been made by the course

leader and are communicated to students in the style

guide. Aspects we have marked against are listed in

Fig. 4. In practice, it is much easier to deduct marks

for failing to adhere to the style, rather than awarding

marks for including particular aspects. This also

caters for the great variety in approach from the

students.

With numerous teaching assistants, consistency in

marking can be difficult to manage. Clear guidance is

necessary here. For instance, when marking variable

and function names, we expect them to be meaning-

full, in full English and written in snake_case. A

marking method that suits this is discussed in

Sect. 3.4.

Another side to style is general formatting of code.

We have adopted and mark against PEP8 standards

[19]. This is accepted as the industry standard and

many styles used in industry are deviations from this.

Asking students to adhere to this requires some jus-

tification as they are unhappy when marked down

for whitespace, though there are tools that can help

with this. Again, these tedious aspects need to be

laboured in the style guide. To help students recog-

nise the importance, polls and quiz questions can be

produced where students select the code that looks

best. To mark this, a linter can be used that checks the

code for PEP8 compliance and outputs a numerical

score. This has had the unexpected benefit of

encouraging students to reflect further on their code;

especially with refactor warnings.

Including style as part of the assessment also poses

a challenge for students who have prior program-

ming experience. As many are self-taught, they might

have picked up some bad habits which take time to

adjust. To mitigate any criticism from these students,

the reasons why we are assessing style need to be

clear. The statement ‘‘If you were working in industry

you would be asked to adhere to the house style.’’ is often

suffice. If they dislike the linter, explain how this

creates consistency in marking which the majority of

students will favour.

Another criteria to mark against which can help

discriminate high-achieving students is code versa-

tility. This could consist of testing edge cases or

similar data files. I have often found that students

might programme the validation and fitting proce-

dure to be versatile, but the plotting routine is not.

Open-ended assessment

Open-ended assessments are often used in pro-

gramming courses. This type of assessment can test

higher-levels of understanding and problem-solving,

and promotes life-long learning [2]. This assessment

method is more common in advanced courses where

there are a limited number of students. However,

there is still space to have some open-ended element

in an introductory course, which will test students

with prior experience in programming. Care must be

taken to ensure the task remains accessible to stu-

dents that are engaged with the course, but are new

to programming. Guidance should be given to stu-

dents to clarify how much work is expected and some

suggested avenues to explore. We have awarded

marks for a range of additions varying in difficulty.

For instance, we have awarded marks for simply

modifying the plot settings or creating additional

plots. Other possible additions include estimating the

fit starting values, how data are validated and

removed, using sophisticated programming tech-

niques that are only mentioned in the course. We

recommend placing caps on how much can be

awarded for each of these additional features; full-

marks here should have a variety of different aspects

done well. Furthermore, these should not

• Useful variable & function names.

• Code structure.

• Useful function docstrings.

• Appropriate use of functions.

• Negatively mark use of global.

• How files are opened and closed.

• How data is filtered and removed.

• How plots are created.

• How versatile the code is.

Figure 4 Suggested points of style to grade in students’ code.

J Mater Sci (2021) 56:16183–16194 16189

compensate for failings in other areas; no matter how

beautiful a plot is, it does not make up for the wrong

answer.

We have allocated 25% of the marks to open-ended

tasks. We would expect 4 or 5 additions done well to

achieve full marks for this category, and we tell stu-

dents this.

Delivery details

Choice of coding environment

The choice of whether to work in a traditional Inte-

grated Development Environment (IDE) or Notebook

is key and dictates both how you deliver content and

how students interact with it. There are also issues

guaranteeing version control if students are expected

to work on their own machine. The technological

landscape here is rapidly evolving and so what we

discuss might soon be outdated.

There are many editors to work with, here we will

comment on Jupyter Notebooks and Spyder. Both are

available from the Anaconda distribution [20], which

also includes many popular libraries in scientific

computing (NumPy, Pandas, matplotlib, SciPy, etc.).

A direct comparison between notebooks and IDEs is

presented in Table 2.

Another important aspect to consider is that

Jupyter Notebooks can be created, edited and run

through online services whilst Spyder must be local.

The latter can create difficulties when assigning ver-

sions of truth across libraries. However, minimal

technical knowledge is required to remedy this using

the anaconda navigator. Of course, there will be dif-

ficulties with students working on inappropriate

personal equipment (tablets, chromebooks, etc.).

If you plan to integrate PEP8 into your marking,

then the linter PyLint comes as standard with Spyder.

If you want to include whitespace in your checks,

then you should downgrade to version 2.5.3 as this is

absent in later releases.

One must also consider where future courses are

headed. For instance, if there is a subsequent pro-

gramming course which is taught in a different style

(object orientated, functional, procedural, etc.), what

students experience in their introductory course must

form a foundation for the advanced course. The

transition from IPython notebooks to C?? in an IDE

is markedly more challenging than if python had

been taught using an IDE.

I teach using Spyder. There are two main reasons

for this: the accessibility of the variable explorer and

debugger, and inbuilt linter. As the variable explorer

is visible by default, it allows the student to see what

the code is doing without having to delve deeper or

specifically request it. This also supports demon-

strators when asked to assist with fixing code. Simi-

larly, debugging is simple to initiate and couples well

with the variable explorer.

Much like how we advise against teaching multiple

languages, we would not recommend teaching with

different IDEs. Of course, students are not restricted

in their choice in environment and a handful will

explore different options.

Table 2 Key differences between notebooks and integrated development environments (IDEs)

Notebook IDE

A notebook is organised into cells. These can take the form of code,

markdown and heading. This allows for thorough documentation

whilst clearly distinguishing between what is and what is not code.

An IDE will primarily consist of a text editor. Spyder also comes

with an IPython console visible by default and some useful panes

such as files, variable explorer and help.

The presentation is clean with minimal buttons that are rarely used. There are many parts to the presentation with different windows and

toolbars.

When giving example code, the intention would be that a student

would read through the notebook and (should) run each code

snippet as they progress.

The code needs to be well commented with useful variable/function

names for the student to follow. Otherwise, the students will

require some accompanying information describing the code.

When writing code traditionally, one had to make use of various

print statements to debug and perform checks. However, recently

there have been improvements that include a debugger and

variable explorer.

A debugger and variable explorer are key features in an IDE and are

visible by default in Spyder.

Spyder also comes with a linter, PyLint, by default.

16190 J Mater Sci (2021) 56:16183–16194

The choice of which environment to work in and

what software to use is ultimately yours. Working

with what you are most familiar with is easiest, but

do consider potential issues raised here.

Student support

Engaging with teaching assistants

Not all students will learn independently and so

support must be provided. Ideally, a computing-tutor

could be assigned to a small group of students who

would have informal discussions and provide for-

mative feedback on a regular basis. However, with

large cohorts, in a non-computer science department,

it is unlikely the number of specialised personnel will

be available to deliver this.

More realistically, a large computer cluster is

booked with help from graduate teaching assistants

(GTAs). If attendance is optional, it might be that

these are relatively quiet with demand increasing as

deadlines approach. It is here when demonstrator

support is vital, furthermore if assignments need to

be marked individually with written feedback then

aim to have a demonstrator to student ratio between

1:15 and 1:20.

Demonstrators require guidance to work effec-

tively. If they are new to the course, they will need

reminding that the students are not fluent in the topic

and may have anxieties. What is more difficult as a

course leader is ensuring the methods demonstrators

are suggesting have been covered. For example,

demonstrator might recommend using pandas to

read-in data files when np.genfromtxt has been

taught explicitly. Pandas is indeed a very powerful

library and definitely a tool a data scientist should

know, however, for a novice, too many alternatives is

confusing; this is the message that needs to be given

to the demonstrator. To help avoid issues like these,

allow for demonstrators to have time to prepare/re-

view the weekly content and create summaries of the

content delivered each week which are accessible to

demonstrators.

There should also be provision to respond to

queries outside of support hours. Discussion boards

enable all questions to be visible and allow follow-up

discussion. Here, we opted for a Piazza discussion

board. This was very active—especially close to

deadlines!—thanks to facets of Piazza that encourage

discussion and create an inclusive environment [21].

Students are able to post anonymously, which

encourages participation from under-represented

groups [22]. It also allows students to respond to each

other and the endorsement of one another’s questions

and responses, thus improving online discussion and

community [23]. Furthermore, Piazza will format

code-snippets in the thread and one can run them in

the discussion board.

Providing support remotely

As a consequence of the pandemic, we were com-

pelled to move all teaching online. In order to remain

consistent with other courses and experimental lab-

oratory, we used Microsoft Teams to provide an

online support space. Other options we considered

were Zoom and Slack. Like the in-person laboratory,

this was meant to provide drop-in conceptual or

technical support. Microsoft Teams worked well and

we will continue to use it if remote learning must

continue. Teams allows the creation of channels

which can be used for particular days or topics. Ini-

tiating a call is simple and creates a chat box between

the users. This chat box remains after the call which is

ideal for quick follow-ups. Furthermore, you can

send code snippets through the chat.

In practice, a student would post in the relevant

channel that they needed help, and a demonstrator

would reply saying they would initiate a call. The

written reply is key so other demonstrators know the

query is being dealt with, especially if there is a

sudden flurry of posts.

In this guise, the demonstrator loses the ability to

walk the floor. This loss cannot be understated as it

provides opportunity to assist students before they

recognise they need help, or if they are shy to raise a

hand. Moreover, it allows for informal feedback and

allows the course leader to see how well the content

is being understood.

Providing support remotely did also yield some

unexpected benefits. Firstly, demonstrators could

have long discussions with students uninterrupted.

Secondly, and most importantly, students could not

see each other working. This removed the scenario

where a novice is sat next to an expert and sees them

complete tasks in a few minutes which have taken

them significantly longer. This somewhat removes an

experience that can trigger aspects of imposter

syndrome.

J Mater Sci (2021) 56:16183–16194 16191

Code demonstration

Often blocks of code or even entire programmes will

need explanation. For instance, debugging the code

to see how the variables update, or highlighting

changes in parameters to obtain different results. This

is where we would also discuss how to test code. In

an introductory course, we do not have time to do

anything further than print statements and

debugging.

Traditionally, these demonstrations will have been

delivered live. Now, somewhat forced by the pan-

demic, these explanations can be prerecorded allow-

ing the course to follow a blended approach. In short,

this involves content that students can access in their

own time asynchronously that supports live syn-

chronous sessions. Blended learning is known to be a

successful approach to teach programming and our

experiences agree [24, 25].

One item to consider here is if coding live is ben-

eficial. The intention being that students would nat-

urally see us make mistakes, how we find them and

how we fix them. Delivering content this way in

person is extremely challenging. One has to write

code within a time-slot, whilst explaining what they

are doing and monitoring the audience. Invariably

when something does go wrong, explaining how you

solve that issue is difficult as you might not imme-

diately know what it is or how long it will take to fix.

Delivering an entire lecture in this way will consist of

you huddled over the computer in the corner with

eyes fixed on the screen: this will be boring. We learnt

this the hard way. A more elegant and engaging

approach would be to discuss and edit prepared code

provided by the course leader. With blended learn-

ing, you may choose to record this discussion. Here,

you have opportunity to rehearse, retake and edit the

video. So it might well be appropriate to include

these errors and their solution in a video if you think

it is valuable to the students. In this case, consider

scripting the inclusion of the bug as part of the video.

Assessment and feedback

The details of marking and feedback are key for

students to improve their coding skills. Ideally, this

would be in person to allow a discussion and ensure

what has been stated is understood. However, in

many instances, there may be neither enough

demonstrators nor time. The next option is for this

feedback to be written and individual. The challenge

then, with multiple demonstrators, is to ensure con-

sistency. In my experience, the majority of students

querying their mark is due to insufficient feedback.

Figure 5 lists some suggestions to improve feedback

by making it more meaningful and more efficient.

Remarking any task after a student complaint is the

least desirable scenario and embarrassing. However,

there are steps that can be taken to reduce this.

Automation is guaranteed in online quizzes, though

one should expect a few teething problems with new

questions. Otherwise, you could specify the required

names of certain functions and check their output

with a script. If you choose to grade coding style, a

linter can help significantly.

Given this is a programming course, we could

write a script or develop an interactive spreadsheet

that is used for marking. This then simplifies allo-

cating marks for different aspects and, if negative

marking is used, can cap deductions for different

areas. This will significantly improve the time it takes

to mark a task, though care should be taken to not

have too many categories. As an example, when

marking variable and function names, we could mark

by selecting the appropriate option from: All correct,

1-2 unclear, 3-4 unclear or 5? unclear. This could be

implemented as a drop-down menu or a check box.

You might not want to share the full mark

scheme with students, as it removes the need for their

thought about design and process. In this case, pro-

duce a simplified rubric to serve as guidance to what

is expected from them. If marking is done online,

then double-marking can be implemented. If the

discrepancy is visible to demonstrators, they can then

take responsibility for their work and review where

needed. Communicating that each assignment is

double-marked to students also provides reassurance

to them. In practice, discrepancies are typically due to

human errors from markers missing a single item

from a script. Double-marking also forces reviewing

code where students have done something non-s-

tandard, but not necessarily wrong (a more common

circumstance).

Summary

In summary, we have provided detailed reflections

and observations on developing an introductory

programming course to non-specialists. This task is

16192 J Mater Sci (2021) 56:16183–16194

non-trivial. Given the importance of this skill in

modern society, we must do more to engage students

that might otherwise ignore this work.

We have presented a multitude of suggestions and

commented on our experience. We did not imple-

ment all of these changes all at once. Indeed, it might

take time to incorporate the ideas listed here. It might

also be that some of the suggestions are not as

imperative as others. That is fine; we are trying to

accommodate a large number of student needs in one

place. However, we do urge you to think about each

point and how it might fit into your structure.

After releasing a summary of our course on a

University blog, we received the below feedback

from a student [26]:

This course actually got me from being scared to

code to taking the computational module in

semester 2 and looking for placements to do

with coding... Amazing.

(Student comment on Twitter)

Getting students to dismiss their incorrect precon-

ceptions about what a programmer does and who can

be a programmer is difficult, but it can be done.

Acknowledgements

I thank Prof. João Quinta da Fonseca, Dr. Christopher

Race and Dr. Tom Shearer for their discussion and

input.

Declarations

Conflict of interest The author declares no conflict

of interest exists with the publication of this manu-

script or its data.

Open Access This article is licensed under a Crea-

tive Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long

as you give appropriate credit to the original

author(s) and the source, provide a link to the Crea-

tive Commons licence, and indicate if changes were

made. The images or other third party material in this

article are included in the article’s Creative Commons

licence, unless indicated otherwise in a credit line to

the material. If material is not included in the article’s

Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of

this licence, visit http://creativecommons.org/licen

ses/by/4.0/.

References

[1] Robins A, Rountree J, Rountree N (2003) Learning and

teaching programming: a review and discussion. Comput Sci

Educ 13(2):137–172

[2] Biggs J, Tang C (2011) Teaching for quality learning at

university. McGraw-Hill Education, Maidenhead

• Provide model answers where appropriate.

• Record video of the lecturer or demonstrator going through the model answers.

• Automate marking where possible.

• Create a clear marking scheme for demonstrators.

• If resources permit, double-mark all assignments and flag significant inconsistencies.

• Give clear guidance to demonstrators on what is expected in the feedback.

• Allow time in case a demonstrator needs to improve their written feedback.

• Direct students to demonstrator support to receive further/understand their feedback,
in the first instance.

• Include the demonstrator in correspondence with a student querying their assignment
(where appropriate).

• Allow time for re-marking if there has been an error in the marking.

Figure 5 Suggestions for

assessing programming when

taught to science and

engineering students not on a

computer science course.

J Mater Sci (2021) 56:16183–16194 16193

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

[3] The Institute of Physics (2011) The physics degree. https://

www.iop.org/sites/default/files/2019-10/the-physics-degree.

pdf. Accession date 2021–05–08

[4] Great Britain. Parliament. Science and Technology Com-

mittee (2016) Digital skills crisis: second report of session

2016–17

[5] Russon M-A, Hooker L (2021) Uk ‘heading towards digital

skills shortage disaster’. https://www.bbc.co.uk/news/busine

ss-56479304. Accession date 2021–05–08

[6] Vahrenhold J, Nardelli E, Pereira C, Berry G, Caspersen ME,

Gal-Ezer J, Kölling M, McGettrick A, Westermeier M

(2017) Informatics education in Europe: are we all in the

same boat. Assoc Comput Mach 10:3106077

[7] Koulouri T, Lauria S, Macredie RD (2014) Teaching intro-

ductory programming: a quantitative evaluation of different

approaches. ACM Trans Comput Educ (TOCE) 14(4):1–28

[8] Brown NCC, Wilson G (2018) Ten quick tips for teaching

programming. PLoS Comput Biol 14(4):e1006023

[9] Stephen C (2020) The top programming languages: our latest

rankings put python on top-again-[careers]. IEEE Spectr

57(8):22

[10] Srinath KR (2017) Python-the fastest growing programming

language. Int Res J Eng Technol 4(12):354–357

[11] Dhruv AJ, Patel R, Doshi N (2021) Python: the most

advanced programming language for computer science

applications. In: Proceedings of the international conference

on culture heritage, education, sustainable tourism, and

innovation technologies (CESIT 2020), pp 292–299

[12] da Fonesca João Q, Race C (2020) Jupyter notebooks for the

computing and communication 1st year materials science

course at the university of manchester. https://github.com/

JQFonseca/computing_materials_science. Accession date:

2021-05-10

[13] Cheryan S, Master A, Meltzoff AN (2015) Cultural stereo-

types as gatekeepers: increasing girls interest in computer

science and engineering by diversifying stereotypes. Front

Psychol 6:49

[14] Google (Firm) Gallup (Firm) (2016) Diversity gaps in

computer science: exploring the underrepresentation of girls,

blacks and hispanics

[15] Ewen C (2020) ’it will change everything’: deepmind’s ai

makes gigantic leap in solving protein structures. Nature

pp 203–204

[16] Institute of Physics. Inclusive teaching: 10 tips for teachers

poster. https://www.iop.org/sites/default/files/2019-07/IGB-

10-tips-whole-school-poster.pdf. Accession date 2021–05–

08

[17] Teodosiev TK, Nachev AM (2015) Programming style in

introductory programming courses. International Journal of

Applied Engineering Research

[18] Ala-Mutka K, Uimonen T, Jarvinen H-M (2004) Supporting

students in c?? programming courses with automatic pro-

gram style assessment. J Inf Technol Educ Res 3(1):245–262

[19] van Rossum G (2001) Pep 8 – style guide for python code. h

ttps://www.python.org/dev/peps/pep-0008/. Accession date

2021–05–06

[20] Anaconda (2012) Anaconda software distribution. https://w

ww.anaconda.com. Accession date: 2021–05–06

[21] Grasso SJM (2017) Use of a social question answering

application in a face-to-face college biology class. J Res

Technol Educ 49(3–4):212–227

[22] Washington T II, Bardolph M, Hadjipieris P, Hub ET,

Ghanbari S, Hargis J (2019) Today’s discussion boards: the

good, the bad, and the ugly. Online J New Horiz Educ

9(3):219

[23] Constantinescu ND (2015) Piazza–a tool for class discus-

sion. Benefits of its use and future requirements. J Sci Arts,

pp 19–24

[24] Boyle T, Bradley C, Chalk P, Jones R, Pickard P (2003)

Using blended learning to improve student success rates in

learning to program. J Educ Media 28(2–3):165–178

[25] Hadjerrouit S et al (2008) Towards a blended learning model

for teaching and learning computer programming: a case

study. Inf Educ Int J 7(2):181–210

[26] [@yelnastyy] (2021) https://twitter.com/yelnastyy/status/13

62858648062599177. Twitter, Accession date: 2021–05–08

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

16194 J Mater Sci (2021) 56:16183–16194

https://www.iop.org/sites/default/files/2019-10/the-physics-degree.pdf
https://www.iop.org/sites/default/files/2019-10/the-physics-degree.pdf
https://www.iop.org/sites/default/files/2019-10/the-physics-degree.pdf
https://www.bbc.co.uk/news/business-56479304
https://www.bbc.co.uk/news/business-56479304
https://github.com/JQFonseca/computing_materials_science
https://github.com/JQFonseca/computing_materials_science
https://www.iop.org/sites/default/files/2019-07/IGB-10-tips-whole-school-poster.pdf
https://www.iop.org/sites/default/files/2019-07/IGB-10-tips-whole-school-poster.pdf
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.anaconda.com
https://www.anaconda.com
https://twitter.com/yelnastyy/status/1362858648062599177
https://twitter.com/yelnastyy/status/1362858648062599177

	Invited viewpoint: teaching programming to students in physical sciences and engineering
	Abstract
	Introduction: why is teaching programming difficult?
	Solutions
	Mastery of syntax and debugging error messages
	Context to learning activities
	Diversity and careers
	Teaching and assessing programming style
	Open-ended assessment

	Delivery details
	Choice of coding environment
	Student support
	Engaging with teaching assistants
	Providing support remotely

	Code demonstration
	Assessment and feedback

	Summary
	Acknowledgements
	References

