Skip to main content
Log in

Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

ABS is an engineering plastic that has butadiene part uniformly distributed over the acrylonitrile-styrene matrix. It possesses excellent toughness, good dimensional stability, easy processing ability, chemical resistance, and cheapness. However, it suffers from inherent shortcomings in terms of mechanical strength and vulnerability to environmental conditions. Furthermore, it is non-conducting and easily fretted. Plating on ABS can serve to enhance the strength and structural integrity as well as to improve durability and thermal resistance resulting in metallic properties on the ABS material. ABS is described as the most suitable candidate for plating because it is possible to deposit an adherent metal coating on it by only the use of chemical pretreatment process and without the use of any mechanical abrasion. This article aims to review the history of ABS plastics, properties of ABS, processes and mechanisms of plating, and studies of plating on ABS involving mainly eco-friendly methods of plating by discussing the literature published in recent years. The details of electroplating of ABS carried out in the authors’ laboratory are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang W, Ji S, Lee I (2013) A facile method of nickel electroless deposition on various neutral hydrophobic polymer surfaces. Appl Surf Sci 283:309–320. doi:10.1016/j.apsusc.2013.06.108

    Article  Google Scholar 

  2. Tran V, Massardier V, Guyot A, Nguyen T (1993) Interactions in metal-polymer-metal interfaces. Polymer 34(15):3179–3183

    Article  Google Scholar 

  3. Grundmeier G, Stratmann M (2005) Adhesion and de-adhesion mechanisms at polymer/metal interfaces: mechanistic understanding based on in situ studies of buried interfaces. Annu Rev Mater Res 35:571–615

    Article  Google Scholar 

  4. Holubar P, Jilek M, Sima M (2000) Present and possible future applications of superhard nanocomposite coatings. Surf Coat Technol 133:145–151

    Article  Google Scholar 

  5. Long DP, Blackburn JM, Watkins JJ (2000) Chemical fluid deposition: a hybrid technique for low-temperature metallization. Adv Mater 12(12):913–915

    Article  Google Scholar 

  6. Cheng K, Yang MH, Chiu WW, Huang CY, Chang J, Ying TF, Yang Y (2005) Ink-jet printing, self-assembled polyelectrolytes, and electroless plating: low cost fabrication of circuits on a flexible substrate at room temperature. Macromol Rapid Comm 26(4):247–264

    Article  Google Scholar 

  7. Garcia A (2011) Ligand induced electroless plating of polymers. PhD Dissertation, École Polytech

  8. Arai S, Sato T, Endo M (2011) Fabrication of various electroless Ni–P alloy/multiwalled carbon nanotube composite films on an acrylonitrile butadiene styrene resin. Surf Coat Technol 205(10):3175–3181

    Article  Google Scholar 

  9. Tengsuwan S, Ohshima M (2014) Environmentally benign electroless nickel plating using supercritical carbon-dioxide on hydrophilically modified acrylonitrile–butadiene–styrene. Appl Surf Sci 311:189–200

    Article  Google Scholar 

  10. Dechasit P, Trakarnpruk W (2011) Ni electroless plating of ABS polymer by palladium and tin-free process. J Met Mater Min 21(2):19–27

    Google Scholar 

  11. Wang Z, Li Z, He Y, Wang Z (2011) Study of an environmentally friendly surface etching system of ABS for improving adhesion of electroless Cu film. J Electrochem Soc 158(11):D664–D670

    Article  Google Scholar 

  12. Kim GG, Kang JA, Kim JH, K-y Lee, Kim SJ, Kim S-J (2007) Photocatalytic pretreatment of acrylonitrile–butadiene–styrene polymer for electroless plating. Scripta Mater 56(5):349–351

    Article  Google Scholar 

  13. Di L, Liu B, Song J, Shan D, Yang D-A (2011) Effect of chemical etching on the Cu/Ni metallization of poly (ether ether ketone)/carbon fiber composites. Appl Surf Sci 257(9):4272–4277

    Article  Google Scholar 

  14. Ferreira ODS, Stevens A, Schrauwen C (2009) Quantitative comparison of adhesion in metal-to-plastic systems. Thin Solid Films 517(10):3070–3074

    Article  Google Scholar 

  15. Ma Z, Tan K, Kang E (2000) Electroless plating of palladium and copper on polyaniline films. Synth Met 114(1):17–25

    Article  Google Scholar 

  16. Kulkarni MV, Elangovan K, Hemachandra RK (2013) Effects of electroplating on the mechanical properties of injection molded thermoplastics. Int J Plast Technol. doi:10.1007/s12588-013-9056-6

    Google Scholar 

  17. Vander Togt RT (2011) Bumper and process to bond ionomers to plastic. US Patent 4,999,227

  18. Teixeira LAC, Santini MC (2005) Surface conditioning of ABS for metallization without the use of chromium baths. J Mater Process Technol 170(1):37–41

    Article  Google Scholar 

  19. Shu Z, Wang X (2012) Environment-friendly Pd free surface activation technics for ABS surface. Appl Surf Sci 258(14):5328–5331

    Article  Google Scholar 

  20. Bazzaoui M, Martins J, Bazzaoui E, Albourine A (2012) Environmentally friendly process for nickel electroplating of ABS. Appl Surf Sci 258(20):7968–7975

    Article  Google Scholar 

  21. Tang X, Cao M, Bi C, Yan L, Zhang B (2008) Research on a new surface activation process for electroless plating on ABS plastic. Mater Lett 62(6):1089–1091

    Article  Google Scholar 

  22. Skelly J (2008) Decorative plating processes for common plastic resins: resin selection as well as plastic part design is critical to matching the right finishing method with the intended application. Met Finish 106(6):61–65

    Article  Google Scholar 

  23. Haba B, Sugai K, Morishige Y, Kishida S (1994) Large scale two-step selective aluminum CVD on laser patterned palladium lines. Appl Surf Sci 79:381–384

    Article  Google Scholar 

  24. Chen Y, Reisman A, Turlik I, Temple D (1995) Cu CVD from copper (II) hexafluoroacetylacetonate II. Laser-assisted selective area deposition. J Electrochem Soc 142(11):3911–3918

    Article  Google Scholar 

  25. Seeböck R, Esrom H, Charbonnier M, Romand M, Kogelschatz U (2001) Surface modification of polyimide using dielectric barrier discharge treatment. Surf Coat Technol 142:455–459

    Article  Google Scholar 

  26. Tóth Z, Szörényi T, Toth A (1993) Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning. Appl Surf Sci 69(1):317–320

    Article  Google Scholar 

  27. McCaskie JE, Tsiamis C (1985) Metal plating on plastics. US Patent 4,520,046

  28. Yang C-Y (2012) Method for preparing electronic component-mounting device. US Patent App. 13/471,108

  29. Hooke R (2014) Method of making shaped charges and explosively formed projectiles. US Patent 8,813,651

  30. Hoyt R, Wrobel J, Cushing J, Jaster M, Voronka N, Frank S, Slostad J, Paritsky L (2014) Structures with internal microstructures to provide multifunctional capabilities. US Patent 14/462,541

  31. Nath J, Shen Y, Nealis E (2014) Systems and methods for manufacturing passive waveguide components. US Patent App. 14/453,563

  32. McCaskie JE (2006) Plating on plastics: a survey of mechanisms for adhering metal films to plastic surfaces. Met Finish 104(5):31–39

    Article  Google Scholar 

  33. Mallory GO, Hajdu JB (1990) Electroless plating: fundamentals and applications. William Andrew, New York

    Google Scholar 

  34. Arnold JR (2003) High quality copper-nickel-chromium plating on plastics: a continuous process and its challenges. Plat Surf Finish 91:355–379

    Google Scholar 

  35. Kulkarni MV, Elangovan K, Hemachandra Reddy K (2012) Improvements in impact resistance property of metal plated abs and Nylon6 thermoplastics. FS J Eng Res 1(1):31–33

    Google Scholar 

  36. Equbal AAKS (2014) Metallization on FDM parts using the chemical deposition technique. Coatings 4:574–586. doi:10.3390/coatings4030574

    Article  Google Scholar 

  37. Tang X, Wang J, Wang C, Shen B (2011) A novel surface activation method for Ni/Au electroless plating of acrylonitrile–butadiene–styrene. Surf Coat Technol 206(6):1382–1388

    Article  Google Scholar 

  38. Garcia A, Berthelot T, Viel P, Mesnage A, Jégou P, Nekelson F, Roussel S, Palacin S (2010) ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting. ACS Appl Mater Interfaces 2(4):1177–1183

    Article  Google Scholar 

  39. Kuzmik JJ (1990) Electroless plating: fundamentals and applications (Reprint Edition). In: Mallory GO, Hajdu JB (eds). The American Electroplaters and Surface Finishers Society, Orlanda, FL, pp 377–399

  40. Hanna F, Hamid ZA, Aal AA (2004) Controlling factors affecting the stability and rate of electroless copper plating. Mater Lett 58(1):104–109

    Article  Google Scholar 

  41. Equbal A, Sood AK (2014) Electroless plating of copper on different shaped ABS parts: a comparison. Int J Adv Mater Manuf Charact 4(1):32–41. doi:10.11127/ijammc.2014.03.05

    Google Scholar 

  42. Li D, Goodwin K, Yang C-L (2008) Electroless copper deposition on aluminum-seeded ABS plastics. J Mater Sci 43(22):7121–7131. doi:10.1007/s10853-008-3031-1

    Article  Google Scholar 

  43. Liu H-P, Li N, Bi S-F, Li D-Y, Zou Z-L (2008) Effect of organic additives on the corrosion resistance properties of electroless nickel deposits. Thin Solid Films 516(8):1883–1889

    Article  Google Scholar 

  44. Lu G, Li X, Jiang H (1996) Electrical and shielding properties of ABS resin filled with nickel-coated carbon fibers. Compos Sci Technol 56(2):193–200

    Article  Google Scholar 

  45. Walsh F, De León CP, Kerr C, Court S, Barker B (2008) Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings. Surf Coat Technol 202(21):5092–5102

    Article  Google Scholar 

  46. Agarwala RC, Agarwala V, Sharma R (2006) Electroless ni-p based nanocoating technology—a review. Synth React Inorg Met-Org Nano-Met Chem 36(6):493–515

    Article  Google Scholar 

  47. Balaraju J, Narayanan TS, Seshadri S (2003) Electroless Ni–P composite coatings. J Appl Electrochem 33(9):807–816

    Article  Google Scholar 

  48. Tzeng S-S, Chang F-Y (2001) EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites. Mater Sci Eng A 302(2):258–267

    Article  Google Scholar 

  49. Charbonnier M, Romand M, Goepfert Y (2006) Ni direct electroless metallization of polymers by a new palladium-free process. Surf Coat Technol 200(16):5028–5036

    Article  Google Scholar 

  50. Sahoo P, Das SK (2011) Tribology of electroless nickel coatings—a review. Mater Des 32(4):1760–1775

    Article  Google Scholar 

  51. Sudagar J, Lian J, Sha W (2013) Electroless nickel, alloy, composite and nano coatings—a critical review. J Alloys Compd 571:183–204

    Article  Google Scholar 

  52. Agarwala R, Agarwala V (2003) Electroless alloy/composite coatings: a review. Sadhana 28(3–4):475–493

    Article  Google Scholar 

  53. Equbal A, Dixit NK, Sood AK (2013) Electroless plating on plastic. IJSER 4

  54. Maul J, Frushour BG, Kontoff JR, Eichenauer H, Ott K-H, Schade C (2000) Polystyrene and styrene copolymers. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, New York. doi:10.1002/14356007.a21_615.pub2

  55. Federation BP (2015) A history of plastics. British Plastics Federation. http://www.bpf.co.uk/plastipedia/plastics_history/Default.aspx

  56. Brickipedia (2015) Acrylonitrile butadiene styrene. Brickipedia. http://lego.wikia.com/wiki/Brickipedia:Brickipedians

  57. Truss R, Chadwick G (1976) Tensile deformation behaviour of ABS polymers. J Mater Sci 11(1):111–117. doi:10.1007/BF00541081

    Article  Google Scholar 

  58. Truss R, Chadwick G (1977) The fracture behaviour of ABS polymers. J Mater Sci 12:503–508. doi:10.1007/BF00540274

    Article  Google Scholar 

  59. Bucknall C, Clayton D, Keast WE (1972) Rubber-toughening of plastics- Part 2 Creep mechanisms in HIPS/PPO blends. J Mater Sci 7(12):1443–1453. doi:10.1007/BF00574936

    Article  Google Scholar 

  60. Kulich DM, Gaggar S, Lowry V, Stepien R (2004) Acrylonitrile–butadiene–styrene (ABS) polymers. Kirk-Othmer Encyclopedia of Chemical Technology

  61. Moore J (1973) Acrylonitrile–butadiene–styrene (ABS)-a review. Composites 4(3):118–130

    Article  Google Scholar 

  62. ABS material data sheet. teststandard.com/data_sheets/ABS_Data_sheet.pdf

  63. Lifton VA, Lifton G, Simon S (2014) Options for additive rapid prototyping methods (3D printing) in MEMS technology. Rapid Prototyp J 20(5):403–412

    Article  Google Scholar 

  64. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67:1191–1203. doi:10.1007/s00170-012-4558-5

    Article  Google Scholar 

  65. Yuan L (2008) A preliminary research on development of a fiber-composite, curved FDM system. National University of Singapore

  66. Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng. doi:10.5402/2012/208760

    Google Scholar 

  67. Yan XG, Gu PENG (1996) A review of rapid prototyping technologies and systems. Comput Aided Des 28(4):307–318

    Article  Google Scholar 

  68. Diegel O, Reay S, Singamneni S, Withell A (2010) Tools for sustainable product design: additive manufacturing. J Sustain Dev 3(3):68–75

    Article  Google Scholar 

  69. Stereolithography; S-PCHPi, http://spie.org/x91418.xml. Accessed 27 Sept 2015

  70. 3DSystems. 30 years of innovation. http://www.3dsystems.com/30-years-innovation. Accessed 27 Sept 2015

  71. Crump SS (1992) Apparatus and method for creating three-dimensional objects. US Patent 5,121,329

  72. Sachs EM, Haggerty JS, Cima MJ, Williams PA (1993) Three-dimensional printing techniques. US Patent 5,204,055

  73. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. doi:10.1021/ac403397r

    Google Scholar 

  74. Chen S, Patel N, Schaffer D, Maharbiz M (2011) Trap and corral: a two-step approach for constructing and constraining dynamic cell contact events in differentiating progenitor cell populations. J Micromech Microeng 21(5):054027

    Article  Google Scholar 

  75. Kannan S, Senthilkumaran D (2014) Assessment of mechanical properties of Ni-coated abs plastics using FDM process. IJMME-IJENS 14(3):30–35

    Google Scholar 

  76. Monzon MD, Diaz N, Benitez AN, Marrero MD, Hernandez PM (2010) Advantages of fused deposition modeling for making electrically conductive plastic. Int Conf Manuf Autom. doi:10.1109/ICMA.2010.36

    Google Scholar 

  77. Kannan S, Senthilkumaran D, Elangovan, K. (2013) Development of composite materials by rapid prototyping technology using FDM method. IEEE, 281–283

  78. Chandrasekhar U, Venkatesh K, Elangovan K, Rangaswamy T (2011) Integrated use of rapid prototyping and metal plating techniques for development of micro air vehicles. IJEST 3(1):188–193

    Google Scholar 

  79. Equbal A, Sood AK (2015) Investigations on metallization in FDM build ABS part using electroless deposition method. J Manuf Process 19:22–31

    Article  Google Scholar 

  80. Saleh N, Hopkinson N, Hague RJ, Wise S (2004) Effects of electroplating on the mechanical properties of stereolithography and laser sintered parts. Rapid Prototyp J 10(5):305–315

    Article  Google Scholar 

  81. Kannan S, Senthilkumaran D (2014) Investigating the influence of electroplating layer thickness on the tensile strength for fused deposition processed ABS thermoplastics. IJET 6(2):1047–1052

    Google Scholar 

  82. Lurie KL, Smith GT, Khan SA, Liao JC, Ellerbee AK (2014) Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy. J Biomed Opt 19(3):036009

    Article  Google Scholar 

  83. Stremsdoerfer G, Ghanem F, Saikali Y, Fares-Karam A (2003) Copper deposition by dynamic chemical plating. J Mater Sci 38(15):3285–3291. doi:10.1023/A:1025190022069

    Article  Google Scholar 

  84. Weng D, Landau U (1995) Direct electroplating on nonconductors. J Electrochem Soc 142(8):2598–2604

    Article  Google Scholar 

  85. Krishnan KH, John S, Srinivasan K, Praveen J, Ganesan M, Kavimani P (2006) An overall aspect of electroless Ni–P depositions—a review article. Metall Mater Trans A 37(6):1917–1926

    Article  Google Scholar 

  86. Feldstein N (1981) Dispersions for activating non-conductors for electroless plating. US Patent 4,282,271

  87. Feldstein N (1982) Electroless plating. US Patent 4,321,285

  88. Equbal A, Equbal A, Sood AK (2014) Metallization on FDM processed parts using electroless procedure. Proc Mater Sci 6:1197–1206. doi:10.1016/j.mspro.2014.07.193

    Article  Google Scholar 

  89. Kirman T (1972) Electroless nickel plating process for nonconductors. US Patent 3,684,572

  90. Feldstein N (1976) Electroless plating process employing non-noble metal hydrous oxide catalyst. US Patent 3,993,799

  91. Elmore G, Davis K (1969) Mechanism of bonding electroless metal to organic substrates. J Electrochem Soc 116(10):1455–1458

    Article  Google Scholar 

  92. Abu-Isa IA (1973) Metal plating of polymeric surfaces. Polym-Plast Technol Eng 2(1):29–65

    Article  Google Scholar 

  93. Metal plating of thermoplastics (1971). US Patent 3,620,804

  94. Magallón-Cacho L, Pérez-Bueno J, Meas-Vong Y, Stremsdoerfer G, Espinoza-Beltrán F (2011) Surface modification of acrylonitrile-butadiene-styrene (ABS) with heterogeneous photocatalysis (TiO2) for the substitution of the etching stage in the electroless process. Surf Coat Technol 206(6):1410–1415

    Article  Google Scholar 

  95. Krulik GA (1980) Method for electroless plating on nonconductive substrates using palladium/tin catalyst in aqueous solution containing a hydroxy substituted organic acid. US Patent 4,182,784

  96. Daneshmand S, Aghanajafi C, Nadooshan AA (2010) The effect of chromium coating in RP technology for airfoil manufacturing. Sadhana 35(5):569–584

    Article  Google Scholar 

  97. Gabe D (1977) Corrosion and protection of sintered metal parts. Powder Metall 20(4):227–231

    Article  Google Scholar 

  98. Conlan W, Dutkewych O (1973) Pre-etch treatment of acrylonitrile-butadiene-styrene resins for electroless plating. US Patent 3,769,061

  99. Weakley-Bollin SC (2010) The effect of injection molding conditions on the near-surface rubber morphology, surface chemistry and adhesion performance of semi-crystalline and amorphous polymers. University of Michigan, Ann Arbor

    Google Scholar 

  100. Beacom SE, Wedel RG (1970) Scanning electron microscopy of plastic surfaces as related to metal deposition. J Colloid Interface Sci 34(3):375–386

    Article  Google Scholar 

  101. Kanani N (2004) Electroplating: basic principles, processes and practice. Elsevier, Oxford

    Google Scholar 

  102. Kato K (1968) Electron microscope studies on the etching of ABS mouldings for electroplating. Polymer 9:419–424

    Article  Google Scholar 

  103. Dennis JK, Such TE (1993) Nickel and chromium plating. Elsevier, Amsterdam

    Book  Google Scholar 

  104. Donovan LP, Timmer RJ (2002) Decorative chrome electroplate on plastics. US Patent 6,468,672

  105. Hurley JL (1975) Decorative electroplates for plastics. US Patent 3,868,229

  106. Narcus H (1979) Bright electroless plating process and plated articles produced thereby. US Patent 4,169,171

  107. Gutzeit G, Talmey P (1958) Chemical nickel plating processes and baths therefor. US Patent 2,935,425

  108. Jones RD (2005) Decoratively finished thermoplastic product and method for manufacturing same. US Patent App. 10/649,190

  109. Metal plating of plastics (1970). US Patent 3,501,332

  110. Marie OJ (1966) Method of electrodepositing a corrosion resistant nickel-chromium coating and products thereof. US Patent 3,282,810

  111. Omura Y (1997) Process for catalyzation in electroless plating. US Patent 5,660,883

  112. Odekerken JM (1972) Process for coating an object with a bright nickel/chromium coatin. US Patent 3,644,183

  113. Eileen M (1972) Process for electroless plating of abs resins. US Patent 3,689,303

  114. Paul T, Crehan WJ (1953) Process of chemical nickel plating. US Patent 2,658,839

  115. Patel GN, Bolikal D, Patel HH (1992) Chromic acid free etching of polymers for electroless plating. US Patent 07/488,256

  116. Brown SD, Ottavio ED, Kuzmik JJ, Grunwald JJ (1972) Method of treating plastic substrates and process for plating thereon. US Patent 3682786

  117. Kuzmik J (1974) Preparation of plastic substrates for electroless plating and solutions therefor. US Patent 3,790,400

  118. Roubal J, Korpiun J (1977) Pretreatment of plastic materials for metal plating. US Patent 06/701,585

  119. Amelio WJ, Jung DY, Markovich V, Sambucetti CJ (1986) Process for manufacturing a concentrate of a palladium-tin colloidal catalyst. US Patent 09/831,008

  120. Naruskevicius L, Rozovskis G, Vinkevicius J, Baranauskas M, Mobius A, Pies P (2004) Etching plastic surface under mild conditions, treating with solution containing cobalt, silver, tin, and/or lead salts having ph from about 7.5 to about 12.5, treating with sulfide solution, metallizing. US Patent US 6712948 B1

  121. De De Minjer CH, vd Boom PFJ (1973) The nucleation with SnCl2–PdCl2 solutions of glass before electroless plating. J Electrochem Soc 120(12):1644–1650

    Article  Google Scholar 

  122. Lindsay JH, La Sala J, Ghorashi HM (1983) Etching and bonding oxygen to acrylonitrile-butadiene-styrene terpolymer or polyphenylene ethers, vacuum deposition, followed by electrodeposition of metal films. US Patent 4,395,313

  123. Cohen R, Meek R (1976) The chemistry of palladium–tin colloid sensitizing processes. J Colloid Interface Sci 55(1):156–162

    Article  Google Scholar 

  124. Lindsay DJ, Feldstein N (1989) Activators for colloidal catalysts in electroless plating processes. US Patent 4,820,547

  125. Comparison of sealing methods for FDM materials (2011). Stratasys

  126. McCarthy DL, Williams CB (2012) Creating complex hollow metal geometries using additive manufacturing and electroforming. In: International Solid Freeform Fabrication Symposium, pp 108–120

  127. Wang Y, Bian C, Jing X (2013) Adhesion improvement of electroless copper plating on phenolic resin matrix composite through a tin-free sensitization process. Appl Surf Sci 271:303–310

    Article  Google Scholar 

  128. Wang G, Li N, Li D (2007) Effect of Pd ions in the chemical etching solution. J Univ Sci Technol Beijing Miner Metall Mater 14(3):286–289

    Google Scholar 

  129. Inagaki N, Kimura H (2009) Electroless copper plating on acrylonitrile butadiene styrene material surfaces without chromic acid etching and a palladium catalyst. J Appl Polym Sci 111(2):1034–1044

    Google Scholar 

  130. Arai S, Kanazawa T (2014) Electroless deposition and evaluation of Cu/multiwalled carbon nanotube composite films on acrylonitrile butadiene styrene resin. Surf Coat Technol 254:224–229

    Article  Google Scholar 

  131. Li D, Yang C-L (2009) Acidic electroless copper deposition on aluminum-seeded ABS plastics. Surf Coat Technol 203(23):3559–3568

    Article  Google Scholar 

  132. Helmut K, Eugen M-S (1972) Process for the pretreatment of plastic for the purpose of adhesive metallization. US Patent 3,702,285

  133. Isa A, Vincent W (1974) Plating pre-treatment in acrylonitrile butadiene styrene. US Patent 3,847,648

  134. Kang DH, Choi JC, Choi JM, Kim TW (2010) An environment-friendly surface pretreatment of ABS plastic for electroless plating using chemical foaming agents. Trans Electr Electron Mater 11(4):174–177

    Article  Google Scholar 

  135. Zhao W, Ma Q, Li L, Li X, Wang Z (2014) Surface modification of ABS by photocatalytic treatment for electroless copper plating. J Adhes Sci Technol 28(5):499–511

    Article  Google Scholar 

  136. Kim GG, Kang JA, Kim SJ, Kim SJ, Shin SH (2007) Improved adhesion to ABS plastics by a photocatalytic reaction. In: Materials science forum. Trans Tech Publication, Dürnten, pp 75–78

  137. European Parliament and the Council, 2002/95/EC, 2003

  138. WHO regional publications (2000), Air quality guidelines for Europe. 2nd edn. Copenhagen

  139. Bazzaoui M, Martins J, Bazzaoui E, Albourine A, Wang R, Hong P-D (2013) A simple method for acrylonitrile butadiene styrene metallization. Surf Coat Technol 224:71–76

    Article  Google Scholar 

  140. Parkinson R, Hart T, Electroplating on plasticts. NiDi Technical Series, Nickel Development Institute

  141. Li Z, Li N, Yin L, He Y, Wang Z (2009) An environment-friendly surface pretreatment of ABS resin prior to electroless plating. Electrochem Solid-State Lett 12(12):D92–D95

    Article  Google Scholar 

  142. European Parliament and the Council, 2005/90/EC, 2006

  143. Yang Z, He Y, Li Z, Li N, Wang Z (2011) Adhesion improvement of ABS resin to electroless copper by H2SO4–MnO2 colloid with ultrasound-assisted treatment. J Adhes Sci Technol 25(11):1211–1221

    Article  Google Scholar 

  144. Ma Q, Zhao W, Li X, Li L, Wang Z (2013) Study of an environment-friendly surface pretreatment of ABS-polycarbonate surface for adhesion improvement. Int J Adhes Adhes 44:243–249

    Article  Google Scholar 

  145. Brandes M (2007) Advances in methods for plating on plastics tout advantages over conventional technologies: alternative plating procedures negate the need for chromic sulfuric acid, resulting in a more environmentally friendly process for electroplaters. Met Finish 105(3):35–40

    Article  Google Scholar 

  146. Brocherieux A, Dessaux O, Goudmand P, Gengembre L, Grimblot J, Brunel M, Lazzaroni R (1995) Characterization of nickel films deposited by cold remote nitrogen plasma on acrylonitrile–butadiene–styrene copolymer App. Surf Sci 90:47–58

    Article  Google Scholar 

  147. Tsuru Y, Mochinaga K, Ooyagi Y, Foulkes FR (2003) Application of vapor-deposited carbon and zinc as a substitute for palladium catalyst in the electroless plating of nickel. Surf Coat Technol 169:116–119

    Article  Google Scholar 

  148. Tang X, Bi C, Han C, Zhang B (2009) A new palladium-free surface activation process for Ni electroless plating on ABS plastic. Mater Lett 63(11):840–842

    Article  Google Scholar 

  149. Yen P-C (1995) Improved ABS plastic activating treatment for electroless copper plating. Polymer 36(17):3399–3400

    Article  Google Scholar 

  150. Ono S, Naitoh K, Osaka T (1999) Initial propagation stage of direct copper plating on non-conducting substrates. Electrochim Acta 44(21):3697–3705

    Article  Google Scholar 

  151. Gui-Xiang W, Ning L, Hui-Li H, Yuan-Chun Y (2006) Process of direct copper plating on ABS plastics. Appl Surf Sci 253(2):480–484

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Space Application Centre, ISRO, Government of India with the project ID ‘OGP 103.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Handanahally Basavarajaiah Muralidhara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivera, S., Muralidhara, H.B., Venkatesh, K. et al. Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review. J Mater Sci 51, 3657–3674 (2016). https://doi.org/10.1007/s10853-015-9668-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9668-7

Keywords

Navigation