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Abstract The solubility product of NbC in low alloyed

steel is computed from electronic density functional

methods including the effects of electronic, vibrational, and

magnetic excitations. Although many simplifications are

made in the computations, agreement with experimental

data is within the scatter of the latter. The T = 0 K terms

dominate in the determination of the solubility product but

vibrational and magnetic contributions play a significant

role also while electronic excitations can be neglected.

Supercell calculations were shown to be poorly suited for

determination of embedding enthalpies of solutes in bcc Fe.

Introduction

In recent years, ab initio modeling of steel has begun in

earnest. Ab initio research on steel started somewhat later

than on other alloys, such as aluminum alloys, for a number

of reasons: the presence of magnetism in steel presents a

formidable challenge that is not present in aluminum

alloys; interstitial solutes such as carbon in steel mean that

computations require more memory and more computer

time as compared to most other alloys; displacive structural

phase transformations play an essential role in steel while

such transformations are absent or of much lesser impor-

tance to other alloys where transformations might be of

order-disorder type. Hence, ab initio modeling of steel

provides a great challenge.

Ab initio methods have made significant inroads already

in the field of computational thermodynamics, often

referred to as ‘‘CALPHAD’’. In this field it is becoming

increasingly common to augment the experimentally

known thermochemical data with ab initio computed

compound formation enthalpies. The ab initio computed

formation enthalpies pertain to a temperature of 0 K, for

which experimental data can be obtained only through

extrapolation of finite temperature data, which has often

proved less reliable than the ab initio data. The T = 0 K

ab initio enthalpies strongly restrain the modeling and

parameter choices at finite temperatures and so it is

believed that this marriage of ab initio and experimental

data gives more reliable thermodynamic representations.

The CALPHAD method is a sophisticated approach in

which phase equilibria and other thermodynamic properties

can be computed for many-component alloys. Obviously,

such versatility makes for complex models that obscure the

actual role and contribution of ab initio modeling. There-

fore, here a very basic, but high practical property is con-

sidered, the computation of solubility products. A

solubility product for a certain compound forming from a

solution is the greatest value that the product of the con-

centrations of the constituents of the compound can take in

that solution. If the actual product of concentrations is

smaller than the solubility product, the compound will not

be thermodynamically stable while in contact with the

solution, and vice versa if it exceeds the solubility product

constituents in the solution will lead to growth of the

compound phase. Of course, the solubility product is

generally a function of temperature. The dependence on

other variables than temperature is generally much less in

solid state systems. For this reason the solubility product is
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a very basic measure that informs us whether at a certain

temperature precipitates are likely to form, or are likely to

dissolve.

Below, the solubility product of the compound NbC in

ferrite (bcc Fe) and in austenite (fcc Fe) will be examined,

because the precipitation of NbC is an important factor in

achieving good properties in a wide range of low-alloyed

steels. A rather simplistic thermodynamic model will be

employed, that is a caricature of the more sophisticated

models that are used in actual CALPHAD modeling, but

with the compelling advantage that the main physical

effects can be taken into account while maintaining

mathematical simplicity. In addition, a simple model has

relatively few variables so that the role of the ab initio

input data is particularly evident.

Thermodynamic model

The free energy G of a Fe–Nb substitutional solid solution

based on the bcc crystal lattice, per bcc site, can be written

as,

Ga ¼ xFeGa½Fe� þ xNbGa½Nb� þ DGa
mixðxNbÞ; ð1Þ

where xFe (xNb) is the fraction of Fe (Nb) atoms per bcc

lattice site, Ga[Fe] (Ga[Nb]) is the free energy of pure bcc

Fe (bcc Nb), and where DGa
mix is the free energy of mixing.

Assuming that the number of vacancies on the bcc crystal

lattice is negligible, the sum of all fractions equals unity,

xFe ? xNb = 1 in this case. In the absence of interstitials, a

fraction per bcc lattice site is equivalent to an atomic

concentration.

Ga[Fe] and Ga[Nb] are temperature dependent,

Ga = Ha - TSa, with implicit temperature dependence in

both the enthalpy Ha and the entropy Sa. Recently, there

has been much success in determining the temperature

dependence fully ab initio by considering various thermal

excitations, e.g., for fcc Al [8], bcc Fe [17, 18], and

cementite Fe3C [7]. DGa
mix can be split in an ideal entropy

part and an excess mixing part, where the excess part

behaves as a polynomial in the composition,

DGa
mixðxNbÞ ¼ �TSidðxNbÞ þ DGa

xsðxNbÞ; ð2Þ

with

SidðxÞ ¼ �kB½x lnðxÞ þ ð1� xÞ lnð1� xÞ�; ð3Þ

DGa
xsðxNbÞ ¼ xNbð1� xNbÞðga

0;Nb þ xNbga
1;Nb

þ x2
Nbga

2;Nb þ . . .Þ: ð4Þ

In these equations g0,Nb
a , g1,Nb

a ,... are expansion coefficients

with reference to the bcc pure elements at the same tem-

perature, kB is the Boltzmann constant. For small xNb the

first-order term g0,Nb
a should be adequate and we shall refer

to it as the embedding free energy DGa
emb½Nb� of element

Nb in the matrix a. The most important physical origins of

the excess term are chemical interactions, elastic distor-

tions, magnetic, and vibrational effects, as well as elec-

tronic entropy effects in the case of metallic materials, and,

for more concentrated alloys also short- or long-range

order.

C is an interstitial solute in bcc Fe which takes the

octahedral interstice of which there are 3 per bcc site. We

now define a property xC as the number of carbon atoms

per bcc site, this means that xC = 3 in the hypothetical

situation where all octahedral interstices are occupied by C.

The free-energy G of a bcc Fe–C solid solution per bcc site,

GaðxCÞ ¼ Ga½Fe� þ xCGd½C� þ DGa
mixðxCÞ; ð5Þ

where Gd[C] is the free energy of pure C diamond, and

DGa
mixðxCÞ is the free energy of mixing. We have selected

diamond and not graphite as our reference state for carbon

because its structural and vibrational properties are very

well-described by ab initio methods, and also because the

free-energy difference between the two states is small

compared to the formation and embedding energies we

shall encounter below. In analogy with Eq. 2 DGa
mixðxCÞ

can be separated into an ideal mixing entropy term and an

excess term,

DGa
mixðxCÞ ¼ �3TSidðfCÞ þ DGa

xsðxCÞ; ð6Þ

with fC = xC/3, and

DGa
xsðxCÞ ¼ xCð3� xCÞðga

0;C þ xCga
1;C þ x2

Cga
2;C þ . . .Þ:

ð7Þ

In a similar fashion as for Nb we can define the embedding

free energy DGa
emb½C� with

DGa
emb½C� ¼

dDGa
xsðxCÞ

dcC

jcC¼0 ¼ 3ga
0;C; ð8Þ

where we used the carbon atomic fraction

cC ¼
xC

1þ xC

: ð9Þ

Ignoring the Wagner interaction [64] of the dilute Nb and C

species, the free energy of the dilute solid solution per bcc

site can be written as

GaðxNb; xCÞ ¼ ð1� xNbÞGa½Fe� þ xNbGa½Nb� þ xCGd½C�
þ xNbDGa

emb½Nb� þ xCDGa
emb½C� � TSidðxNbÞ

� 3TSidðfCÞ:
ð10Þ

The free energy of the dilute fcc solid solution can be

derived analogously, provided that we take into account

that C occupies octahedral interstices of which there is only

one interstice per fcc site,
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GcðxNb; xCÞ ¼ ð1� xNbÞGc½Fe� þ xNbGc½Nb� þ xCGd½C�
þ xNbDGc

emb½Nb� þ xCDGc
emb½C�

� TSidðxNbÞ � TSidðxCÞ: ð11Þ

The fcc free energy can be written relative to that of the bcc

solid solution,

GcðxNb; xCÞ ¼ GaðxNb; xCÞð1� xNbÞ þ ð1� xNbÞGc�a½Fe�
þ xNbGc�a½Nb� þ xNbDGc�a

emb½Nb� þ xCDGc�a
emb½C�

� TSidðxCÞ � 3TSidðfCÞ; ð12Þ

where the superscripts c - a are shorthand for differences

between properties pertaining to fcc and bcc.

The embedding free energy for a species ‘‘Q’’ can be

divided in several contributions, which are described in

detail below,

DGa
emb½Q� ¼

dðDHa
mix þ DGa

vib;mix þ DGa
mag;mix þ DGa

elec;mixÞ
dcQ

jcQ¼0

¼ DHa
emb þ DGa

vib;emb þ DGa
mag;emb þ DGa

elec;emb;

ð13Þ

where we recognize vibrational, magnetic, and electronic

contributions. The first-term concerns an enthalpy because

the configurational entropy is treated separately as its

derivative is ill-behaved in the limit ci = 0.

The free energy of the stoichiometric NbC phase can be

represented as G[NbC]. Its formation free energy per for-

mula unit can be found easily from the general formula for

a compound PnQm

DGf ½PnQm� ¼ G½PnQm� � nG½P� � mG½Q�; ð14Þ

where elements P and Q are in their reference states. In

actuality, NbC precipitates in fcc or bcc Fe are not stoichi-

ometric but have a considerable concentration of vacancies

on the C sublattice as can be deducted e.g. from the detailed

experimental data in Tables III [24] and II [47] and as studied

in detail by Balasubramanian et al. [3]. Often it is assumed

that the composition is close to NbC0.87, i.e., about 13 % of

the C sublattice is vacant. For simplicity, we will assume

stoichiometry. The assumption can be overcome relatively

easily, but we will leave it for a future contribution.

The solubility product for stoichiometric NbC in ferrite

(bcc) is now derived easily for the chemical reaction

½Nb�a þ ½C�a , NbC # þDG; ð15Þ

where DG vanishes at equilibrium. It is computed

according to a tangent of the solid solution free energy

intersecting with the stoichiometric precipitate free energy

DG ¼ GaðxNb; xCÞ þ ð1� xNbÞ
dGaðxNb; xCÞ

dxNb

þ ð1� xCÞ
dGaðxNb; xCÞ

dxC

� G½NbC�: ð16Þ

Expanding it to lowest order in xNb and xC, and solving

DG ¼ 0 then gives,

ðxNbxCÞlmt ¼ 3exp

� G½NbC� �Ga½Nb� �Gd½C� �DGa
emb½Nb� �DGa

emb½C�
kBT

� �

ð17Þ

where the subscript ‘‘lmt’’ indicates a solubility limit which

occurs at equilibrium between solid solution and NbC.

Moreover, G[NbC] - Ga[Nb] - Gd[C] is recognized as

the formation free energy of NbC relative to the pure

elements DGf ½NbC�, see Eq. 14, so that we may write the

solubility product as

Ka½NbC� ¼ ðxNbxCÞalmt

¼ 3 exp
DGf ½NbC� � DGa

emb½Nb� � DGa
emb½C�

kBT

� �
:

ð18Þ

The solubility product for stoichiometric NbC in austenite

(fcc) is defined by reference to ferrite as

Kc½NbC� ¼ ðxNbxCÞclmt

¼ exp
DGf ½NbC� � DGc

emb½Nb� � DGc
emb½C�

kBT

� �

¼ 1

3
Ka½NbC� exp �DGc�a

emb½Nb� þ DGc�a
emb½C�

kBT

� �
:

ð19Þ

Furthermore, to facilitate comparisons with experimental

data, it is useful to define the solubility products with

reference to concentrations expressed in weight percent ðK̂Þ
rather atoms per crystal lattice site (K) according to

wQ ¼
100 xQmQ

xCmC þ xFemFe þ xNbmNb

; ð20Þ

where Q may represent C, Fe, or Nb, and mQ is atomic

mass of atomic species Q, so that

K̂½NbC� ¼ ðwNbwCÞlmt � 104 mNbmCm�2
Fe K½NbC�; ð21Þ

where in the RHS we used xNb , xC � 1. Experimentally,

solubility products appear over some temperature range to

be rather well represented by straight lines in Arrhenius

plots. Therefore, the parameters A and B in

log K̂ ¼ �A

T
þ B ð22Þ

have been widely reported in the literature.

Magnetic effects

It should be mentioned that the magnetic disordering that

occurs in ferrite in the temperature range of interest here
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strongly affects the free energies [1, 5, 13]. When consid-

ering the effect of magnetic disordering on the excess

mixing properties, such as DGa
emb½Nb� and DGa

emb½C�, the

effect can be very significant also. This is illustrated by

using the ‘‘proportional conversion method’’ of Nishizawa

et al. [34] which has been applied to Fe–C and other sys-

tems [9, 37]. The ‘‘proportional conversion method’’

describes the effect of alloying as,

G�magðTÞ ¼ 1�
X

Q

cQ

 !
T�C

T
ð0Þ
C

Gð0ÞmagðT�Þ; ð23Þ

where cQ is the atomic fraction of the atomic species ‘‘Q’’

(Ni and Co species are not counted in the sum), TC
* is the

Curie temperature of the Fe-rich bcc alloy, TC
(0) is the same

for pure bcc Fe (1043 K), and T* = TT C
(0) / TC

* (this is

Eq. 49 in Ref. [34]). For many sufficiently dilute alloys the

Curie temperature TC
* is well described by a linear function

of the composition

T�C ¼ T
ð0Þ
C þ

X
Q

DTC;QcQ; ð24Þ

where DTC;Q is the negative slope of TC
* associated with

species ‘‘Q’’. Assuming that the alloying elements in their

reference states are not magnetic, the magnetic free energy

then is

G�magðTÞ ¼Gð0ÞmagðTÞ

� 1�
X

Q

cQð1� 2rQþð2rQ� r2
QÞcQþ r2

Qc2
QÞ

" #
;

ð25Þ

where rQ ¼DTC;Q=T
ð0Þ
C . To relate Gmag

* (T) to the mixing

free energy we need to remove the linear part (1 -
P

Q cQ)

Gmag
(0) (T) which leaves,

DGmix;magðTÞ ¼ Gð0ÞmagðTÞ

�
X

Q

cQð2rQ þ ðr2
Q � 2rQÞcQ � r2

Qc2
QÞ

" #
:

ð26Þ

As rQ is the only solute-specific parameter, the magnetic

effect on the embedding free energy of species Q,

DGa
mag;emb½Q� ¼

dDGmix;mag

dcQ

jcQ¼0 ¼ 2rQGð0ÞmagðTÞ: ð27Þ

In Fig. 1 Gmag
(0) (T) is visualized using the pure bcc Fe

parameters from Ref. [5]. For elements that strongly reduce

TC, so that rQ is of order unity, it implies that the magnetic

contribution to the embedding free energy is of the same

order as the magnetic free energy of pure bcc Fe.

Electronic excitation effects

At finite temperature the Fermi–Dirac distribution broad-

ens around the Fermi-level which signifies that some

electronic states above the Fermi-level are populated and

some states below it are vacated. Obviously this has con-

sequences for the energy and entropy of the system. For

insulators and semiconductors the presence of a band gap

at the Fermi-level makes electronic excitation effects

negligible, but for metallic materials the Sommerfeld

approximation [2] gives a good representation of the free

energy contribution

Gelec ¼ �
p2

6
nð�FÞk2

BT2; ð28Þ

where nð�FÞ is the density of electronic states at the Fermi-

level, see Table 1. The contribution to the embedding free

energy is computed by approximating the composition

derivative with a finite difference

DGelec;emb ¼
dGelec

dcQ

jcQ¼0

� Gelec½FemQ� � m

n
Gelec½Fen� �

1

p
Gelec½Qp�;

ð29Þ

where Q represents either Nb or C, and m, n, and p are

chosen sufficiently large. In this case we selected for Nb;

m = 53, n = 54, p = 54, and for C; m = 54, n 54, p = 64.

The vibrational contribution to the formation free energy of

NbC is given by a similar equation where for NbC a

Nb32C32 supercell was used.

Fig. 1 Magnetic free energy of pure bcc Fe as function of

temperature
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Vibrational excitation effects

Vibrational effects are generally considered to be the origin

of the close-packed to bcc transitions with increasing

temperature in several metals because the relatively open

bcc structure tends to have a greater vibrational entropy

than the close-packed structures. Computationally, vibra-

tional excitation effects are usually included in the har-

monic or the quasi-harmonic approximation. In the latter

approximation, the crystal structure is allowed to expand

and relax as the temperature is increased but otherwise it

corresponds to the harmonic approximation. In the earliest

implementations the Debye model was often used [32, 66].

Here, we will use the so-called direct method [39, 53]

where interatomic force parameters are determined in a

supercell by moving each individual atom away from its

equilibrium position, one atom at a time, and monitoring

the resulting forces on the remaining atoms. The force

parameters are then Fourier transformed to obtain a

dynamical matrix which, upon diagonalization, yields the

vibrational density of states g(x) as function of the vibra-

tional frequency x. The vibrational density of states pro-

vides the free energy due to vibrations[53]

Gvib ¼
Z
0

dx�hxgðxÞ 1

2
þ m

1� m

� �

þ kBT

Z
0

dx
gðxÞ
1� m

½m lnðmÞ þ ð1� mÞ lnð1� mÞ�;

ð30Þ

where m ¼ expð��hx=kBTÞ. DGvib;emb is evaluated through

finite differences just as for the electronic free-energy

contribution, see Eq. 29.

Ab initio model parameters

As seen in the section above various terms are needed to

compute solubility products. The formation free energies of

precipitating phases DGf ½NbC�, embedding energies DGa,

and energy parameters specific for the bcc–fcc transfor-

mation DGc�a: Strictly speaking only ground state param-

eters, pertaining to T = 0 K, can be obtained in a

straightforward manner for first-principles computations.

Vibrational excitations, in the harmonic or quasi-harmonic

approximation can be included without great difficulty, and

electronic excitations also do not pose great challenges, see

e.g., Ref. [8]. Including magnetic excitations ab initio is

more challenging, although here too progress in being

made, see e.g., [7, 17, 18]. Here, we will treat the vibra-

tional and electronic excitations ab initio, but the magnetic

excitations will be treated through the empirical approach

of Nishizawa et al. [35]. The ground-state properties can be

computed straightforwardly with any modern electronic

structure code, here we used the Vienna Ab initio Software

Package (VASP) 4.18 [22]. We used the projector aug-

mented-wave (PAW) [4, 23] type pseudo-potentials and a

generalized gradient approximation (GGA) type exchange-

correlation functional [42]. The Nb pseudo-potential-trea-

ted 11 electrons per Nb atom as valence electrons (4p6, 5s2,

and 4d3), the C pseudo-potential-treated 4 electrons per C

atom (2s2 and 2p2), and the Fe pseudo-potential considered

eight valence electrons per Fe atom (4s13d7). Accuracy was

set to high, the plane-wave expansion of the wave functions

included waves up to 400 eV kinetic energy. Integrations

in reciprocal space were carried out with a spatially

homogeneous C centered grid such that the product of

atoms in the cell and k-points in the first Brillouin zone was

about 10000. Structural optimizations were deemed con-

verged when the magnitude of the force on any atom core

was less than 0.5 meV/nm, and each individual stress

component was less than 0.3 GPa and typically much

smaller than this limit.

Table 1 lists the structural and energetic parameters for

the pure elements and NbC in their ground states. Typi-

cally, lattice parameters are reproduced to within 1 or 2 %,

and while the total energies are known to contain sizeable

systematic errors, these errors largely cancel so that for-

mation enthalpies, DGf ½NbC�(T = 0 K), are generally

accurate up to about a 1 kJ/mole atoms. Nevertheless, there

is a very significant difference with the experimental value,

even if we consider that the latter pertains to a temperature

of 298 K rather than 0 K. The experimental NbC formation

Table 1 Structural and energetic parameters for the pure elements

and NbC in their reference states

Property Expt Ab

initio

Fe bcc

a (nm) 0.2867 (Ref. [25, 41, 63]) 0.2829

M (lB/atom) 2.22 Ref. [60] 2.21

n(�F) (states/(atom eV)) – 0.9862

Nb bcc

a (nm) 0.33004 Ref. [41, 63] 0.3323

n(�F) (states/(atom eV)) – 1.5204

C diamond

a (nm) 0.35669 Ref. [41, 63] 0.3563

n(�F) (states/(atom eV)) – 0

NbC (NaCl prototype)

a (nm) 0.4465 Ref. [41, 63] 0.4507

n(�F) (states/f.u. eV) – 0.6581

DHf ½NbC�(T = 0 K)

(kJ/mol f.u.)

-137.6 Ref. [12], -133

(T = 289 K) Ref. [10, 67]

-104.3

Formula unit is abbreviated as f.u.
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entropy is 3.3 J/mol atom K [67]. Even if we neglect that

this entropy tends toward zero as the temperature approa-

ches 0 K, this temperature difference accounts only for a

few percent of the difference between ab initio and

experimental free energy change.

Embedding free energy of Nb in ferrite

The embedding free energy of Nb in ferrite at T = 0 K can

be computed ab initio with a variety of methods, such as

via Fe bcc supercell calculations in which a single-Nb atom

is placed among a great number of Fe atoms [51, 55], by

determining the mixing enthalpy from special quasi ran-

dom structures [55], and by determining the mixing

enthalpy from a cluster expansion (CE) for bcc Fe–Nb

substitutional alloys [55]. As the second and third

approaches are both based on the CE formalism, we will

consider the first and second methods here.

Supercells can be used to model dilute solutions, par-

ticularly when we consider a series of supercells of

increasing size. Such a sequence of larger and larger cells

then models increasingly dilute solid solutions, and by

taking a limit the infinite solution can be evaluated [30, 54,

55] using arguments derived from linear elastic theory.

Furthermore, in the case of dilute alloys one can consider

both fixed-volume (energy) and -pressure (enthalpy) cells.

Fixed volume cells, when viewed as being embedded in the

matrix material represent the case of the embedding

material being infinitely stiff, whereas fixed-pressure cells

(typically with P = 0 GPa) represent embedding in an

infinite-compliant matrix material. As can be expected, the

most realistic representation is some intermediate in

between these two extremes, although a little tilted toward

the fixed pressure side [30]. Supercells can be created in a

variety of ways. In Fig. 2 we show supercells with sc, bcc,

and fcc, arrangements of lattice points. Supercells as a

representation of dilute solid solutions has as main short-

coming artificial periodicity, and consequently highly

specific directions in which the dilute species ‘‘feel’’ each

other. Figure 2 illustrates that the dilute species interact

primarily along h100i, h111i, and h110i directions in the

sc, bcc, and fcc type supercells, respectively. In highly

anisotropic materials this means that sc, bcc, and fcc type

supercells will each have their own convergence toward the

infinite-dilution limit. This is evident from Fig. 3 where sc,

bcc, and fcc type cells clearly follow distinct trends. This is

not surprising in the case of ferrite, it is elastically far from

isotropic (A = 2.41 [49]) and the magnetization is strongly

coupled to elastic deformation. Hence, it is to be expected

that the interaction between Nb atoms with their strong

elastic distortions is highly sensitive upon the direction of

interaction. It appears that for constant volume cells fcc

and bcc type cells are best, whereas for constant pressure

cells sc type supercells are optimal. When a series of

supercells is considered of various types without regard for

the various supercell types a rather jumbled sequence of

formation energies and enthalpies is found, as shown in a

recent study of Fe–Mo alloys by Lejaeghere et al. [26].

Ozolins and Asta [38] observed oscillatory interactions in

dilute solutions of Sc in Al which they attributed to a

combination of geometric volume expansion and electronic

Friedel oscillations. While electronic Friedel oscillations

do not provide an explanation here, one could suspect

oscillations in the spin density. However, this did not show

up in our analysis of the spin density in the various cells

considered: Nb atoms aligned antiferromagnetically with

the Fe matrix and the local moment centered on the Nb

atom, computed as the spin density integrated over the Nb-

centered Voronoi volume, was about -0.7 lB per Nb atom.

Aside from the local moment on the Nb atom the spin

density in the Fe matrix appeared rather unperturbed from

the case without Nb, with the spin density strongly peaking

near the Fe atoms and the spin density taking moderately

negative values in the interstitial regions, without showing

any sign of significant anisotropy. Therefore, lattice

relaxations in elastically strongly anisotropic bcc Fe are

expected to be main reason for the jumbled sequence of

formation energies and enthalpies. A much more troubling

aspect of Fig. 3 is that while constant volume and constant

pressure results do seem to converge to the same infinite-

dilution limit for each type of supercell, as in the study of

Mishin et al. [30], the sc, bcc, and fcc type supercells each

converge to their own distinct limit. It is evident that bcc,

fcc, and sc type cells when extrapolated to n-1 = 0, which

corresponds to DHa
emb½Nb�, give values of about -2.4,

-5.2, and -10.9 kJ/mol, respectively. This is the case not

only for the embedding energy, but also for other properties

such as the magnetization change per Fe replaced by Nb.

This is in contrast to earlier defect energy supercell cal-

culations on non-magnetic materials, where generally

accurate and consistent results were obtained [30, 51, 54,

55]. In keeping with the previously mentioned role of

elastic relaxations, it should be noted that the bcc, fcc, sc

sequence is seen also in the elastically stiffest directions,

which are in decreasing order h111i, h110i, and h100i.
When considering all constant volume results we extract a

DHa
emb½Nb� value of -7.01 kJ/mol with a squared correla-

tion coefficient of 0.60, while the zero pressure results give

a DHa
emb value of -10.06 kJ/mol with a squared correlation

coefficient of 0.17. The energies can be extrapolated more

reliably than the enthalpy results—presumably because

changes of volume affect the systematic error in the enthalpy

calculations. As the supercell results are not conclusive,

another method is used also: evaluation of the mixing
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enthalpy in the dilute limit using special quasi-random

structures (SQS) [69]. Details of how these SQS were

designed will not be reported here, the description of these

structures is given in Table 2. The ab initio computed for-

mation enthalpies are shown in Fig. 4. As described in Ref.

[55], the mixing enthalpy can be obtained by fitting a low

order polynomial in the composition to the SQS enthalpies.

Both third- and fourth-order polynomials were considered

giving the following expressions for the mixing enthalpy,

Table 2 Description of bcc-derived SQS structures

Lattice vectors Atomic positions

SQS16bcc-A12B4

0 �1 �1h i A-1
2

-3
2

1
2

A -1
2

-1
2

-1
2

A 0 0 -1

�2 �1 1h i A 1
2

-1
2

-1
2

A 1 -1 0 A -1 0 0

2 �1 1h i A -1
2

-1
2

1
2

A 0 -1 1 A 0 0 0

A 1
2

-1
2

1
2

A 1 0 0 A 3
2

-1
2

1
2

B -1 -1 0 B 0 -1 0 B 1
2

-3
2

1
2

B -3
2

-1
2

1
2

SQS18bcc-A12B6(a)

0 �1 �1h i A -1
2

-1
2

-1
2

A -1
2

1
2

-3
2

A 0 0 -1

1
2

3
2

�3
2

D E
A 1

2
-1

2
-1

2
A -3

2
1
2

-1
2

A -1 0 0

�3 0 0h i A -1 1 -1 A -1
2

1
2

-1
2

A 0 0 0

A 0 1 -1 A 1
2

1
2

-1
2

A 1 1 -1

B -3
2

-1
2

-1
2

B -3
2

1
2

-3
2

B -1 0 -1

B 1
2

1
2

-3
2

B 1 0 -1 B -2 0 0

SQS18bcc-A12B6(b)

0 1 1h i A -1 -1 1 A -1
2

-3
2

3
2

A 0 -1 1

�2 �1 1h i A 0 0 0 A 1
2

-1
2

1
2

A 0 -1 2

3
2

�3
2

3
2

D E
A -1

2
1
2

1
2

A 0 0 1 A 1
2

-1
2

3
2

A 0 1 0 A 1
2

1
2

1
2

A 1 0 1

B -3
2

-1
2

1
2

B -1 0 0 B -1
2

-1
2

1
2

B 1 -1 1 B -1 0 1 B -1
2

-1
2

3
2

SQS18bcc-A12B6(c)

�1
2

3
2

�1
2

D E
A -1 -1 -1 A -1

2
-1

2
-3

2
A 1

2
-1

2
-3

2

3
2

1
2

�3
2

D E
A 0 0 -1 A -1

2
1
2

-1
2

A 0 0 0

�3
2
�3
2
�3
2

D E
A 0 1 -1 A 1

2
1
2

-1
2

A 1 1 -1

A 3
2

1
2

-1
2

A 0 1 0 A 1
2

3
2

-1
2

B 0 0 -2 B -1 0 -1 B -1
2

-1
2

-1
2

B -1
2

1
2

-3
2

B 1
2

1
2

-3
2

B 1 0 -1

SQS16bcc-A8B8(a)

0 �1 �1h i A -1
2

-1
2

-1
2

A 0 -1 0 A 1
2

1
2

-3
2

2 0 0h i A 1 0 -1 A -1
2

1
2

-1
2

A 0 1 -1

0 2 �2h i A 1
2

1
2

-1
2

A 1 1 -1 B -1
2

1
2

-3
2

B 0 0 -1 B 1
2

-1
2

-1
2

B 1 -1 0

B -1
2

-1
2

1
2

B 0 0 0 B 1
2

-1
2

1
2

B 1 0 0

SQS16bcc-A8B8(b)

0 �1 �1h i A -1
2

1
2

-3
2

A 0 0 -1 A 1
2

-1
2

-1
2

2 0 0h i A 1 0 -1 A -1
2

-1
2

1
2

A 0 1 -1

0 2 �2h i A 1
2

1
2

-1
2

A 1 1 -1 B -1
2

-1
2

-1
2

B 0 -1 0 B 1 -1 0 B 1
2

1
2

-3
2

B -1
2

1
2

-1
2

B 0 0 0 B 1
2

-1
2

1
2

B 1 0 0

Table 2 continued

Lattice vectors Atomic positions

SQS16bcc-A8B8(c)

0 �1 �1h i A -1
2

-1
2

-1
2

A 1
2

-3
2

1
2

A 0 0 -1

�2 �1 1h i A 1 -1 0 A 0 0 0 A 1
2

-1
2

1
2

2 �1 1h i A 1 0 0 A 3
2

-1
2

1
2

B -1 -1 0

B -1
2

-3
2

1
2

B 0 -1 0 B 1
2

-1
2

-1
2

B -3
2

-1
2

1
2

B -1 0 0 B -1
2

-1
2

1
2

B 0 -1 1

SQS16bcc-A8B8(d)

0 �1 �1h i A -1
2

-3
2

1
2

A 1
2

-3
2

1
2

A 0 0 -1

�2 �1 1h i A 1 -1 0 A 0 0 0 A 1
2

-1
2

1
2

2 �1 1h i A 1 0 0 A 3
2

-1
2

1
2

B -1 -1 0

B -1
2

-1
2

-1
2

B 0 -1 0 B 1
2

-1
2

-1
2

B -3
2

-1
2

1
2

B -1 0 0 B -1
2

-1
2

1
2

B 0 -1 1

SQS16bcc-A8B8(e)

0 �1 �1h i A -1
2

-1
2

-1
2

A 0 -1 0 A 1
2

-3
2

1
2

�2 �1 1h i A 1 -1 0 A 0 0 0 A 1
2

-1
2

1
2

2 �1 1h i A 1 0 0 A 3
2

-1
2

1
2

B -1 -1 0

B -1
2

-3
2

1
2

B 0 0 -1 B 1
2

-1
2

-1
2

B -3
2

-1
2

1
2

B -1 0 0 B -1
2

-1
2

1
2

B 0 -1 1

SQS16bcc-A8B8(f)

1 �1 1h i A 1
2

-1
2

-1
2

A 1 0 0 A 0 0 1

1 1 �1h i A 0 1 0 A 1
2

1
2

3
2

A 1
2

3
2

1
2

0 2 2h i A 1 1 1 A 1
2

1
2

1
2

B -1
2

-1
2

-1
2

B 0 -1 0 B 0 0 -1 B 0 0 0

B 1
2

-1
2

1
2

B 1
2

1
2

-1
2

B -1
2

1
2

1
2

B 0 1 1

SQS16bcc-A8B8(g)

1 �1 1h i A 0 0 -1 A 1 0 0 A -1
2

1
2

1
2

1 1 �1h i A 0 1 0 A 1
2

1
2

1
2

A 1
2

1
2

3
2

0 2 2h i A 1
2

3
2

1
2

A 1 1 1 B -1
2

-1
2

-1
2

B 0 -1 0 B 1
2

-1
2

-1
2

B 0 0 0

B 1
2

-1
2

1
2

B 1
2

1
2

-1
2

B 0 0 1

B 0 1 1
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DHa
mixðxNbÞ ¼ xNbð1� xNbÞðha

0;Nb þ ha
1;NbxNbÞ; ð31Þ

with h0,Nb
a = 22.5 kJ/mol, h1,Nb

a = 4.7 kJ/mol, and

DHa
mixðxNbÞ ¼ xNbð1� xNbÞðha

0;Nb þ ha
1;NbxNb þ ha

2;Nbx2
NbÞ;
ð32Þ

with h0,Nb
a = 18.1 kJ/mol, h1,Nb

a = 57.1 kJ/mol, and h2,Nb
a =

-17.5 kJ/mol. While both of these equations have about

the same squared correlation coefficients, 0.958 and 0.960,

respectively, they give DHa
emb½Nb� values that differ

somewhat, 22.5 and 18.1 kJ/mol, respectively. More

important than this difference between the two fits is the

fact that it differs in sign from the results obtained from the

supercell calculations. In some alloys, such as Fe–Cr [29,

68], it is well-known that mixing and unmixing tendencies

may change with composition so that dilute and more

concentrated alloys behave differently. Such tendencies

have never been reported for Fe–Nb however, and the

isoelectronic Fe-V system has been reported to not feature

such a change with composition [28, 29]. Although Fe–Nb

is a compound forming system, and the bcc-based FeNb B2

and Fe3Nb DO3 compounds form weakly exothermically

from the pure elements, the actually occurring Fe–Nb

compounds are not bcc superstructures but structures sta-

bilized by atomic size differences. The size mismatch

between the small Fe atoms and the much larger Nb atoms

makes unmixing tendencies in the disordered solid solution

more plausible. It should be remarked that the SQSs

derived mixing enthalpy also agrees in sign with that

obtained from thermodynamic modeling of the experi-

mental phase equilibria [40] over the entire composition

range. A reason for the apparent discrepancy between su-

percell and SQS derived mixing and embedding enthalpies

may stem from the magnetic order. The magnetic order

relevant for experimental observations is invariably in the

neighborhood of the Curie temperature and thus includes

significant magnetic disorder. Such disorder is known to

strongly affect mixing and unmixing tendencies, as is

apparent from studies on Fe–Cr (see Fig. 3c) [19]. One

could speculate that in the SQSs the magnetic disorder

which follows from the quasi-random distribution of Nb

atoms, to some extent mimics the solid solution near the

Curie temperature. The supercell results might then strictly

speaking be correct at T = 0 K, but actually be irrelevant

to the actual finite temperature Fe–Nb solution. Therefore,

we prefer the SQS-based results over the supercell results.

Hence, we proceed with an embedding enthalpy at T = 0 K

for Nb of 20 ± 2 kJ/mol (average of the third- and fourth-

order polynomials).

The effect of magnetic disordering to the embedding

free energy can be evaluated with Eq. 27. The important

parameter here is the rate at which the Curie temperature

changes with Nb concentration. This property was mea-

sured by Stoelinga et al. [57] to be an increase of 0.8 K per

atomic percent Nb. If we assume that the Curie temperature

exhibits the same compositional trends as the magnetiza-

tion per atom and make an estimate of the latter on the

basis of the SQS results a contrasting picture emerges, see

Fig. 2 Three types of

supercells for arranging defects

in bcc Fe, left with simple cubic

(sc), middle with body centered

cubic (bcc), and right with face

centered cubic (fcc)

arrangements of lattice points.

The sc, bcc, and fcc supercells

correspond to compositions

Fe15Nb, Fe26Nb, and Fe31Nb,

respectively

Fig. 3 Formation energies and enthalpies of Nb in bcc Fe at T = 0 K

as obtained from supercells Fen-1Nb as function of n-1. Relaxed

supercells with volume fixed at that of pure Fe: triangle connected

with thin lines as guide for the eye. Fully relaxed supercells at

P = 0 Pa: squares connected with thick lines as guide for the eye.

Filled, open, and gray symbols with black dot indicate sc, bcc, and fcc

type supercells. Note that 1/n corresponds to the atomic fraction of

Nb, so that extrapolation to 1/n = 0 yields the embedding enthalpy
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Fig. 5. The magnetization per atom of the Fe–Nb SQS

structures in the limit of vanishing Nb concentration decays

with 0.033 lB per atomic percent Nb. In amorphous Fe–Nb

alloys also a significant decrease in the Curie temperature

is measured [61]. Here, we will use the Stoelinga results

[57]. We thus arrive at an estimate of rNb = 0.8 9 100/

1043 = 0.077 which indicates that near the Curie tem-

perature the embedding free energy is decreased by 2�
ð0:077Þ � ð1:6Þ � 0.25 kJ/mol. Clearly, magnetic disor-

dering contributes a rather minor term to the embedding

free energy.

The vibrational effects have been evaluated also. Fig-

ure 6a shows the vibrational free energy per atom com-

puted for Fe54, Fe53Nb, Nb54, C64, (NbC)32, and Fe54C

using Eq. 30. The very stiff NbC and especially diamond C

lattices are evident from the much smaller vibrational free

energies of these structures. The curves for Fe54,Fe53Nb,

and Fe54C largely overlap. The vibrational contribution to

the Nb embedding energy is displayed in Fig. 6b. Nb

expands the Fe lattice and thereby introduces lower fre-

quency modes so that the vibrational contribution to the

embedding free energy, particularly at higher temperatures

is negative (exothermic). In the temperature range from

500 to 1100 K, the vibrational contribution is well

described by DGa
vib;emb½Nb� ¼ �0:1011� 0:0042 T kJ/mol.

At T = 1000 K, the vibrational contribution is seen to be

about -4 kJ/mol. However, bear in mind that this result is

based on a supercell calculation, which in the previous

subsection was shown to be unreliable. The vibrational

contribution has not yet been evaluated via the SQS

structures.

Electronic contributions to the embedding free energy

can be obtained from Eq. 28. FenNb supercells give a nð�FÞ

Table 3 logðK̂½NbC�Þ as parametrized by the parameters A and B
according to Eq. 22 as computed here, and as reported in the literature

SS phase A (K) B T range (K) References

bcc 11069 5.52 500–1043 This study

bcc 10811 5.26 1043–1100 This study

bcc 10960 5.43 *1100 Hudd et al. [11]

bcc 9830 4.33 Turkdogan [62]

bcc 13161 6.02 ±1073 Pichler et al. [43]

bcc 9930 3.90 773–1173 NbC, Taylor [59]

bcc 10045 4.45 773–1173 NbC0.87, Taylor [59]

fcc 7670 3.56 This study

fcc 7500 2.9 de Kazinczy et al. [6]

fcc 7700 3.18 Mori et al. [31]

fcc 7900 3.42 Narita et al. [33]

fcc 7290 3.04 Meyer [27]

fcc 9100 3.7 Smith [56]

fcc 9290 4.37 Johansen et al. [15]

fcc 7970 3.31 Koyama [20]

fcc 7510 2.96 Nordberg et al. [36]

Note that K̂½NbC� is defined with respect to weight percent Nb and C

in ferrite

Fig. 4 Mixing enthalpy of bcc Fe–Nb at T = 0 K as obtained from

the formation enthalpies of fully relaxed SQSs as function of the

atomic fraction Nb. Open circles formation enthalpy of SQSs, solid
line fit to SQS formation enthalpy according to Eq. 31, heavy dashed
line same but according to Eq. 32

Fig. 5 Magnetization per atom in bcc Fe–Nb at T = 0 K as obtained

from fully relaxed SQSs as function of the atomic fraction Nb. Open
circles magnetization per atom of SQSs, solid line fit to SQS

magnetization per atom
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typically about 4 states/eV less than in the sum of nð�FÞ of

Fen and Nb1. Analysis of nð�FÞ of the SQS structures shows

some scatter, but a least squares fit to the second-order

polynomial in the composition gives a decrease of about

1.3 states/eV per Nb atom at infinite dilution. Again, a

significant difference between supercell and SQS results,

with the latter appearing more likely as pure Fe and pure

Nb have nð�FÞ values of only about 1 and 1.5 states/(eV

atom). Taking the SQS results, we obtain thus DGelec ¼
1:5� 10�6 T2 kJ/mol Nb dissolved in ferrite. At T = 1000

K this amounts to an endothermic contribution of about

1.5 kJ/mol. The magnetic disordering, vibrational, and

electronic contributions are not small relative to the

ab initio computed embedding enthalpy at T = 0 K.

Figure 7 shows the total embedding free energy obtained

Fig. 6 a Vibrational free energy per mole atoms as computed with

Eq. 30 for Nb, C, NbC, Fe, Fe53Nb, and Fe54C as function of

temperature. the free energies of Fe, Fe53Nb, and Fe54C overlap on

the scale of the graph. b Excess vibrational free energy per mole

atoms relative to the reference states for NbC, Nb in ferrite solution,

and C in ferrite solution as computed with a vibrational analogue of

Eq. 29

Fig. 7 Embedding free energy of Nb in bcc Fe (thick solid line) and

the magnetic (dashed line), vibrational (dash-dotted line), and

electronic (gray line) contributions

Fig. 8 Enthalpy of mixing per mol Fe1-cCc as function of the carbon

concentration ‘‘C’’ as derived from a CE (solid line). Squares ab initio

formation enthalpies of Fe–C superstructures. Triangles formation

enthalpies as reproduced by the CE
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from summing the T = 0 K enthalpy, the magnetic,

vibrational, and electronic free energies.

Embedding free energy of C in ferrite

The embedding free energy of C in ferrite at T = 0 K has

been computed by two ab initio methods: the afore men-

tioned supercell method, and the CE method. At least two

supercell results are available in the literature, h0,Nb
a =

0.74 eV = 71 kJ/mol [14] (Table III) and h0,C
a = 0.81 eV =

78 kJ/mol [44] (Table IV). Our own calculations are

essentially identical to the latter. Both references [14, 44]

find their values confirmed by thermodynamic calculations

based on experimental data [9, 48], but some caution is

required. When the solubility limit of C in ferrite clmt is

measured, as reported in Table I of Hasebe et al. [9], and

the embedding free energy is extracted according to

DGa
emb½C� ¼ kBT lnðclmt=3Þ; one obtains DHa

emb½C� = 91 kJ/

mol and DSa
emb½C� = 2.9 kB. Other solubility limit mea-

surements give comparable values: DHa
emb½C� = 101 kJ/mol

and DSa
emb½C� = 4.0 kB [45] and DHa

emb½C� = 99 kJ/mol and

DSa
emb½C� = 3.8 kB [58]. As the embedding free energy

computed with supercells for Nb was deemed unreliable

for for T = 0 K, here also, a comparison with another

method is called for. A CE can be carried out over the

octahedral interstitial sublattice of bcc Fe. Of course, the

interstitial sublattice can be vacant, or occupied by C. The

highest possible C concentration occurs for FeC3 when all

interstices are occupied by C. We select a CE from a pool

of clusters which satisfy two criteria: (a) up to four sites in

a cluster, (b) no two sites within a cluster are farther apart

than the fifth nearest neighbor. These criteria yield a pool

of 26 clusters. Furthermore we compute the energies of all

FenCm structures that can be generated by imposing that the

primitive translations are 1.5 abcc or shorter, this yields

eight distinct types of periodic cells, and 389 distinct

structures. After fully structurally relaxing these structures,

we eliminate structures with Fe lattices that can no longer

be classified as being bcc-based. By imposing that the CEs

are complete [50], it is possible to examine all possible CEs

that can be generated with our pool of clusters, we select

the CE that has the smallest ‘‘predictive error’’ [52] or

better known as leave-one-out cross-validation score [65].

We use this CE to compute the enthalpy of mixing, see

Fig. 8, as described elsewhere [55]. Taking the slope of the

mixing enthalpy at zero concentration C yields h0,Nb
a =

90 kJ/mol.

The magnetic contribution to the C embedding free

energy can be estimated with Eq. 27 if the change in the

Curie temperature per fraction C is known. Here we resort

to the estimate by Hasebe et al. [9], DTC = -500 K, so that

rC = -500/1043 = -0.48. It should be noted that the

magnetization per atom decays more rapidly, q(M/M0)/ qcC

= -1.37 in the limit of vanishing carbon concentration cC.

Proceeding with rC = -0.48, we find that at T = 1000 K

the embedding free energy is increased by 2� ð�0:48Þ �
ð�1:6Þ � 1.5 kJ/mol.

The vibrational contribution to the C embedding energy,

as derived from the data shown in Fig. 6a, is displayed in

Fig. 6b. C atoms leave the stiff diamond lattice when they

are inserted in the Fe lattice and therefore clearly lower

energy vibrational modes are created so that the vibrational

contribution to the embedding free energy is strongly

Fig. 9 Magnetization per atom in Fe1-cCc as function of the carbon

concentration as computed ab initio (squares) and as extracted from a

cluster expansion (solid line)

Fig. 10 Embedding free energy of C in bcc Fe (thick solid line) and

the magnetic (dashed line), vibrational (dash-dotted line), and

electronic (gray line) contributions
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negative. In the temperature range of interest, from 500 to

1100 K, the vibrational free energy is approximately linear

with T: DGa
emb½C� = -3.068–0.0285 T kJ/mol. At T = 1000

K, the vibrational contribution is seen to be almost -32

kJ/mol.

Electronic contributions to the embedding free energy

are obtained from Eq. 28. In Fe128C supercells nð�FÞ is

about 10 states/eV greater than in the appropriate sum of

Fe128 and C diamond cells. An analysis of nð�FÞ of the

almost 400 structures for the CE gave an increase also in

nð�FÞ but just about 0.5 states/eV per dissolved C atom. If

we accept the CE results we obtain thus DGelec ¼ �6�
10�7 T2 kJ/mol C dissolved in ferrite. The magnetic dis-

ordering and electronic contributions are small relative to

the ab initio computed embedding enthalpy at T = 0 K, but

the vibrational contribution is somewhat more significant.

Figure 10 shows the total embedding free energy obtained

from summing the T = 0 K enthalpy, the magnetic,

vibrational, and electronic free energies (Fig. 9).

Free energy of NbC formation

The formation of NbC from the reference states gives a

formation enthalpy of -104.3 kJ/mol NbC at T = 0 K, see

Table 1. There is no magnetic free-energy contribution, so

we focus on the vibrational and electronic terms. The

vibrational free energy is favorable for NbC formation. The

reason is that although NbC is hard and has high energy

vibrational modes associated with the C species, it is still is

not nearly as stiff as diamond so that the average of Nb-bcc

and C-diamond has higher energy vibrational modes than

NbC. In the temperature range of interest, from 500 to 1100

K, we may well represent the vibrational free energy by a

linear function DGvib½NbC� = -1.706–0.0024 T kJ/mol

NbC.

The electronic contribution is easily evaluated from the

data in Table 1, where it is evident that NbC formation

leads to the reduction of 0.86 states/(eV formula unit) at the

Fermi level. Using Eq. 28 we find DGelec½NbC� ¼ 1�
10�6 T2 kJ/mol, which is a rather minor effect. The ab ini-

tio formation free energy can thus be given as DGf ½NbC� =
-106.0–0.0024 T ? 1� 10�6 T2 kJ/mol.

Ab initio solubility product

All parameters for computing the solubility product of

stoichiometric NbC in ferrite have now been evaluated.

Although the magnetic contribution to the free energy of

NbC formation from the ferrite solid solution is highly non-

linear, the free energy of NbC formation from the pure

elements and the Nb and C embedding free energies are all

rather well-described by simple linear expressions in the

temperature over the temperature range of interest for

ferrite. In Fig. 11 the computed value of logðK̂a
NbCÞ vs (1/T)

is displayed. A linear fit with respect to 1/T is made both

for the data below TC and for the data above TC, so that FM

and PM A and B coefficients are found, which are listed in

Table 3. The comparison with literature values is well

within the noise of the experimental data [11, 43, 59, 62].

The agreement is especially good with Hudd et al. [11],

Turkdogan [62], and Taylor [59], with the ab initio solu-

bility products generally being just a little lower, which in

view of size effects and concomitant surface energies

would be reasonable. The solubility product of Pichler

et al. [43] clearly deviates from the other data for reasons

that are not yet apparent. The good agreement is quite

surprising in view of the many approximations that were

made in the ab initio calculations: vacancies on the carbon

sublattice in NbC were ignored, anharmonic effects in solid

solution and precipitate phase were omitted; magnetic

disordering was considered in a very crude manner as well;

and supercell calculations for impurity properties were

shown to be rather inconclusive. One now can wonder what

the effect is of the various excitations on the computed

solubility product: basically the electronic contribution

could have been ignored, the magnetic contribution plays a

minor role near and above the Curie temperature only,

leaving the vibrational excitations as main effect. However,

if all excitations are neglected, the A parameter increases

by 1.7 %, while the B parameter decreases by 25 % over

Fig. 11 Arrhenius plot of K̂a½NbC� : as computed here ab initio (solid
line), compared with experimental data from Hudd et al. [11] (dash-
dotted line), Turkdogan [62] (dashed line), Pichler et al. [43] (dash
double-dotted line), and Taylor [59] (dotted line)
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the values in Table 3. As could be expected the main

contribution of the excitations is on the entropy and

therefore on the B parameter. Ignoring the vibrational

excitation particularly would have noticeably worsened the

agreement with the experimental data.

Austenite solubility product

By using the experimentally determined values of

DGc�a
emb½Nb� and DGc�a

emb½C�, we can now also obtain K̂c
NbC

with Eq. 19. Kaufman and Nesor [16] gave DGc�a
emb½Nb� =

210–3.556 T (J/mol) based on a Fe–Nb phase diagram

assessment, while Sharma and Kirkaldy [46] as cited in

Ref. [47] gave DGc�a
emb½C� = -64111.4–32.158 T (J/mol).

Thus, the computed K̂c
NbC is compared with various

experimentally determined solubility products in Table 3.

In general, a good agreement is seen, especially consider-

ing the scatter in the experimental data.

Conclusions

Solubility products are of great practical importance

because they provide a quick insight on the likelihood on

precipitation and dissolution. This is especially evident

when alloys are dilute and when many alloying species are

present because alternatives, such as a full multicomponent

thermodynamic modeling, can be difficult and cumber-

some. Nevertheless, ab initio modeling of solubility prod-

ucts is still in its infancy, especially so for steel. Here a first

effort is made at predicting the solubility product of NbC in

ferrite. A much simplified thermodynamic approach is

chosen in order to get a transparent physical understanding

of the physical effects that are essential for a reliable result.

As a first step, ab initio T = 0 K formation enthalpies were

used in conjunction with magnetic, vibrational, and elec-

tronic free energies. Many approximations were made in

the ab initio calculations: vacancies on the carbon sublat-

tice in NbC were ignored, anharmonic effects in solid

solution and precipitate phase were omitted; magnetic

disordering was considered in a very crude manner as well;

and coupling between the various excitations was ignored.

Thus the effect of lattice expansion was ignored, and also

the effect of lattice expansion of the electronic density of

states and the electronic free energy. Likewise, the effects

of C deficiency in NbC on vibrational, electronic excita-

tions, and on configurational entropy were ignored.

Moreover supercell calculations for impurity properties

were shown to be rather inconclusive; giving an incorrect

sign for the embedding enthalpy of Nb in ferrite, and quite

probably a too low value for the embedding enthalpy of C

in ferrite as well. It was shown that the n-atom supercell

results exhibited n-1 scaling in the dilute limit only when

similar supercell types were used. Supercells with sc, bcc,

or fcc arrangements of impurities showed distinct conver-

gence behavior toward the dilute limit. Constant volume

supercells exhibited less scatter in the energetic and mag-

netic data than constant pressure supercells, presumably

because supercell volume and shape optimization intro-

duces non-systematic errors. Shortcomings of supercell

calculations could be overcome by using special quasi-

random structures or cluster expansions and it was sur-

mised that this was due to the fact the SQSs results mimic

the magnetic disorder on the Fe atoms that occurs under

actual experimental conditions. This implies that the sep-

aration of the embedding free energy in terms of separate

chemical and magnetic contributions is more complicated

the common prescription followed here.

The fact that the ab initio computed solubility product

agreed closely with the average of the experimental values

gives confidence that more subtle effects, such as how

other alloying elements affect the solubility product of

NbC, in the spirit of Refs. [21, 47], eventually can be

modeled also.
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