Skip to main content
Log in

Phase structure and vibrational spectra of rare-earth-oxide ceramics of Dy2(1−x)Tm2x O3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rare-earth-sesquioxide ceramics have been found to possess potential applications in solid-state lasers due to their excellent physical and chemical properties as well as low cost. In this paper, composite powders with the composition of Dy2(1−x)Tm2x O3 were prepared by ball milling method and corresponding ceramics were obtained using the pressureless sintering technique. Phase structure and vibrational spectra were investigated using X-ray diffraction, Raman spectrometer, and FT-IR spectrometer. It is shown that the mixture of Dy2O3 and Tm2O3 converts to an ordered solid solution of body-centered cubic structure after heat treatment at 1,100 °C for 4 h. It is also found that the cell constants of ceramics decrease linearly with the increase of Tm2O3 content. Raman spectra analysis demonstrates that bond length plays a major role in determining the frequencies of Raman bands at high-frequency range and that peak positions exhibit a blue shift with the increase of Tm2O3 content due to decreasing cell constant. Similar phenomenon is also observed in infrared spectra, which shows linearly increasing infrared band frequency with decreasing cell volume. The ball milling method used for preparing composite powders and vibrational spectra analysis in this work provide some important references for the study of laser ceramics containing Dy2O3 and Tm2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoekstra HR, Gingerich KA (1964) Science 146:1163

    Article  CAS  Google Scholar 

  2. Zinkevich M (2007) Prog Mater Sci 52:597

    Article  CAS  Google Scholar 

  3. Hongo T, Kondo K-i, Nakamura K, Atou T (2007) J Mater Sci 42:2582. doi:10.1007/s10853-006-1417-5

    Article  CAS  Google Scholar 

  4. Klein PH, Croft WJ (1967) J Appl Phys 38:1603

    Article  CAS  Google Scholar 

  5. Petermann K, Huber G, Fornasiero L, Kuch S, Mix E, Peters V, Basun SA (2000) J Lumin 87–89:973

    Article  Google Scholar 

  6. Yang Q, Dou CG, Ding J, Hu XM, Xu J (2007) Appl Phys Lett 91:111918

    Article  Google Scholar 

  7. Lacovara P, Choi HK, Wang CA, Aggarwal RL, Fan TY (1991) Opt Lett 16:1089

    Article  CAS  Google Scholar 

  8. Deloach LD, Payne SA, Chase LL, Smith LK, Kway WL, Krupke WF (1993) IEEE J Quantum Electron 29:1179

    Article  CAS  Google Scholar 

  9. Eyring L (1979). In: Gschneidner KA Jr., Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. North-Holland Publishing Company, Ames

  10. Foex M, Traverse J (1966) Rev Int Hautes Temp Refract 3:429

    CAS  Google Scholar 

  11. Wickersheim KA, Lefever RA (1961) J Opt Soc Am 51:1147

    Article  CAS  Google Scholar 

  12. Baun WL, McDevitt NT (1963) J Am Ceram Soc 46:294

    Article  CAS  Google Scholar 

  13. White WB, Keramidas VG (1972) Spectrochim Acta Part A Mol Spectrosc 28:501

    Article  CAS  Google Scholar 

  14. McDevitt NT, Baun WL (1964) Spectrochim Acta 20:799

    Article  CAS  Google Scholar 

  15. Schaack G, Koningstein JA (1970) J Opt Soc Am 60:1110

    Article  CAS  Google Scholar 

  16. Repelin Y, Proust C, Husson E, Beny JM (1995) J Solid State Chem 118:163

    Article  CAS  Google Scholar 

  17. Galceran M, Pujol MC, Gluchowski P, Stręk W, Carvajal JJ, Mateos X, Aguiló M, Díaz F (2010) J Am Ceram Soc 93:3764

    Article  CAS  Google Scholar 

  18. Farhat LB, Amami M, Hlil EK, Hassen RB (2009) J Alloys Compd 479:594

    Article  Google Scholar 

  19. Shaltout I, Badr Y (2005) J Mater Sci 40:3367. doi:10.1007/s10853-005-2845-3

    Article  CAS  Google Scholar 

  20. Mun JH, Jouini A, Novoselov A, Guyot Y, Yoshikawa A, Ohta H, Shibata H, Waseda Y, Boulon G, Fukuda T (2007) Opt Mater 29:1390

    Article  CAS  Google Scholar 

  21. Ruggeri S, Lenain C, Roué L, Liang G, Huot J, Schulz R (2002) J Alloys Compd 339:195

    Article  CAS  Google Scholar 

  22. Smith WF, Hashemi J (2006) Foundations of materials science and engineering. McGraw-Hill Higher Education, Boston

    Google Scholar 

  23. Goldschmidt ZB (1978). In: Gschneidner KA Jr., Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 1. North-Holland Publishing Company, Ames

  24. Zhang H, Yang Q, Zhang B, Lu S (2010) J Raman Spectrosc. doi:10.1002/jrs.2840

Download references

Acknowledgement

This work was supported by the National Science Foundation of China under Grant Nos. 90922025, 51032003, and 50921061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, X., Xu, Y. & Zhou, J. Phase structure and vibrational spectra of rare-earth-oxide ceramics of Dy2(1−x)Tm2x O3 . J Mater Sci 47, 1697–1701 (2012). https://doi.org/10.1007/s10853-011-5948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5948-z

Keywords

Navigation