Skip to main content

Advertisement

Log in

Stored energy and recrystallization temperature in high purity copper after equal channel angular pressing

  • Ultrafine-Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Equal channel angular pressing (ECAP) was conducted at room temperature to impose high strain into high purity copper. Differential Scanning Calorimeter (DSC) was used to estimate the stored energy from ECAP and recrystallization temperature. It was found that the stored energy increases upon ECAP processing until a peak is reached at 12 passes of ECAP, and a slight decrease in stored energy was observed at higher ECAP passes. The recrystallization temperature decreases upon the increase of the stored energy up to ~50 J/mol, and reaches a stable valve of ~210 °C. Partial annealing of an ECAP processed (8 passes) sample by heating to ~185 °C at a heating rate of 20 °C/min released the stored energy from ~55 to ~18 J/mol, without substantial change on the recrystallization temperature of the sample. A two parameters model was used to help calculate stored energy of ultrafine-grained copper after high strain level processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, UK

    Google Scholar 

  2. Liu L, Baker I (1993) Scr Metab 28:197. doi:https://doi.org/10.1016/0956-716X(93)90562-7

    Article  CAS  Google Scholar 

  3. Baker I, Liu L, Mandal D (1994) Scr Metab Mater 32:167. doi:https://doi.org/10.1016/S0956-716X(99)80031-4

    Article  Google Scholar 

  4. Haessner F, Hoschek G (1976) Scr Metab 10:63. doi:https://doi.org/10.1016/0036-9748(76)90329-X

    Article  CAS  Google Scholar 

  5. Mandal D, Baker I (1995) Scr Metab Et Mater 33:831. doi:https://doi.org/10.1016/0956-716X(95)00290-C

    Article  CAS  Google Scholar 

  6. Mandal D, Baker I (1996) Mater Forum 207–209:521

    Article  Google Scholar 

  7. Haessner F, Hosted G, Tolg G (1979) Acta Metall 27:1539. doi:https://doi.org/10.1016/0001-6160(79)90176-7

    Article  CAS  Google Scholar 

  8. Schonborn K, Haessner F (1982) Z Metallk 73:739

    Google Scholar 

  9. Witzel W, Haessner F (1987) Z Metallk 78:316

    CAS  Google Scholar 

  10. Baker I, Liu L (1993) Scr Metab Et Mater 30:1167. doi:https://doi.org/10.1016/0956-716X(94)90333-6

    Article  Google Scholar 

  11. Mao WM et al (1994) Recrystallization and grain growth. Publishing Company of Metallurgy Industry, Beijing

    Google Scholar 

  12. Hutchson WB (1989) Meat Sci 8:185

    Article  Google Scholar 

  13. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi:https://doi.org/10.1016/J.PMATSCI.2006.02.003

    Article  CAS  Google Scholar 

  14. Stolyarov VV, Zhu YT, Lowe TC et al (1999) Nanostructured Mater 11:947. doi:https://doi.org/10.1016/S0965-9773(99)00384-0

    Article  CAS  Google Scholar 

  15. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi:https://doi.org/10.1016/S0079-6425(99)00007-9

    Article  CAS  Google Scholar 

  16. Wang JT, Wei W, Zhang Y et al (2006) In: Zhu YT, Langdon TG, Horita Z, Zehetbauer MJ, Semiatin SL, Lowe TC (eds) Ultrafine grained materials IV. (TMS) The Minerals, Metals and Materials Society, p 89

  17. Wei W (2004) A dissertation of Nanjing university of science and technology, Nanjing

  18. Gubicza J, Estrin Y, Ungar T et al (2005) Mater Sci Eng A 400–401:334. doi:https://doi.org/10.1016/J.MSEA.2005.03.042

    Article  Google Scholar 

  19. McElroy RZ, Szkopiak ZC (1972) Int Metab Rev 17:175

    Article  CAS  Google Scholar 

  20. Nes E (1998) Prog Mater Sci 41:129. doi:https://doi.org/10.1016/S0079-6425(97)00032-7

    Article  Google Scholar 

  21. Zehetbauer M (1993) Acta Metall Mater 41:589. doi:https://doi.org/10.1016/0956-7151(93)90089-B

    Article  CAS  Google Scholar 

  22. Zehetbauer M, Seumer V (1993) Acta Metall Mater 41:577. doi:https://doi.org/10.1016/0956-7151(93)90088-A

    Article  CAS  Google Scholar 

  23. Liu Q, Hansen N (1995) Scr Mater 32:1289. doi:https://doi.org/10.1016/0956-716X(94)00019-E

    Article  CAS  Google Scholar 

  24. Hughes DA, Hansen N (2000) Acta Mater 48:2985. doi:https://doi.org/10.1016/S1359-6454(00)00082-3

    Article  CAS  Google Scholar 

  25. Hurley PJ, Humphreys FJ (2003) Acta Mater 51:1087. doi:https://doi.org/10.1016/S1359-6454(02)00513-X

    Article  CAS  Google Scholar 

  26. Mandal D, Baker I (1995) Scr Metall 33:645. doi:https://doi.org/10.1016/0956-716X(95)00272-W

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Foundation of China under Grant No. 50474028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Tao Wang.

Additional information

This paper is dedicated to Ultrafine Grained Materials V.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, J.T., Cheng, C. et al. Stored energy and recrystallization temperature in high purity copper after equal channel angular pressing. J Mater Sci 43, 7326–7330 (2008). https://doi.org/10.1007/s10853-008-2903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2903-8

Keywords

Navigation