Skip to main content
Log in

Purification of catalytically produced carbon nanotubes for use as support for fuel cell cathode Pt catalyst

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A purification method based on HCl treatment under reflux was employed for purification of carbon nanotube (CNT) samples, obtained by the electric discharge method utilizing Zr(Co0.5Ni0.5)2, Ce3(Co0.5Ni0.5)2 and Ce(Co0.5Ni0.5)5 as catalysts. Raman Spectroscopy provided information on the SWCNT presence in the untreated samples. Scanning Electron Microscopy (SEM) showed CNT with different diameters and lengths. Different acid treatment conditions were employed and the best results were achieved for HCl 3 mol/L aqueous solution during 24 h reflux. Transmission Electron Microscopy (TEM) images, associated with EDS, revealed the catalyst removal from the original sample and the presence of other carbon structures near the CNT formation. CNT acid functionalization for Pt nanoparticles dispersion was successful, resulting in a homogeneously dispersed system, as seen in TEM images. Temperature Programmed Oxidation (TPO) analysis of the raw and purified samples indicated that after purification there are three different carbon species present on the purified material, each one showing a different behavior towards O2 oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tzitzios V, Georgakilas V, Oikonomou E, Karakassidesb M, Petridis D (2006) Carbon 44:848

    Article  CAS  Google Scholar 

  2. Baughman RH, Zakhidov AA, De Heer WA (2002) Science 297:787

    Article  CAS  Google Scholar 

  3. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K et al (2000) Science 287:622

    Article  CAS  Google Scholar 

  4. Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Science 293:76

    Article  CAS  Google Scholar 

  5. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Adv Mater 12:750

    Article  CAS  Google Scholar 

  6. Waje MM, Wang X, Li W, Yan Y (2005) Nanotechnology 16:S395

    Article  Google Scholar 

  7. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Electrochem Commun 6:66

    Article  CAS  Google Scholar 

  8. He PG, Dai LM (2004) Chem Commun 3:348

    Article  Google Scholar 

  9. Herrera JE, Resasco DE (2003) Chem Phys Lett 376:302

    Article  CAS  Google Scholar 

  10. Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (1999) Chem Phys Lett 313:91

    Article  CAS  Google Scholar 

  11. Kong JA, Cassell AM, Dai H (1998) Chem Phys Lett 292:567

    Article  CAS  Google Scholar 

  12. Rana RK, Koltypin Y, Gedanken A (2001) Chem Phys Lett 344:256

    Article  CAS  Google Scholar 

  13. Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna A (2002) J Nanoparticle Res 4:131

    Article  CAS  Google Scholar 

  14. Peigney A, Coquay P, Flahaut E, Vandenberghe RE, De Grave E, Laurent C (2001) J Phys Chem B 105:9699

    Article  CAS  Google Scholar 

  15. Zhao B, Hu H, Niyogi S, Itkis ME, Hamon MA, Bhowmik P, Meier MS, Haddon RC (2001) J Am Chem Soc 123:11673

    Article  CAS  Google Scholar 

  16. Yang CM, Kaneko K, Yudasaka M, Iijima S (2002) Nano Lett 2:385

    Article  CAS  Google Scholar 

  17. Lobach AS, Spitsina NG, Terekhov SV, Obraztsova ED (2002) Phys Solid State 44:475

    Article  CAS  Google Scholar 

  18. Niyogi S, Hu H, Hamon MA, Bhowmik P, Zhao B, Rozenzhak SM, Chen J, Itkis ME, Meier MS, Haddon RC (2001) J Am Chem Soc 123:733

    Article  CAS  Google Scholar 

  19. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y-S, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253

    Article  CAS  Google Scholar 

  20. Holzinger M, Hirsch A, Bernier P, Duesberg GS, Burghard M (2000) Appl Phys A 70:599

    Article  CAS  Google Scholar 

  21. Rao CNR, Satishkumar BC, Govindaraj A, Nath M (2001) Chem Phys Chem 2:78

    CAS  Google Scholar 

  22. Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodriguez-Macias FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE (1998) Appl Phys A 67:29

    Article  CAS  Google Scholar 

  23. Shi Z, Lian Y, Liao F, Zhou X, Gu Z, Zhang Y, Ijima S (1999) Solid State Commun 112:35

    Article  CAS  Google Scholar 

  24. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Appl Phys Lett 60:2204

    Article  CAS  Google Scholar 

  25. Alvarez WE, Pompeo F, Herrera JE, Balzano L, Resasco DE (2002) Chem Mater 14:1853

    Article  CAS  Google Scholar 

  26. Herbst MH, Macêdo MIF, Rocco AM (2004) Química Nova 27:986

    Article  CAS  Google Scholar 

  27. Benoit JM, Buisson JP, Chauvet O, Godon C, Lefrant S (2002) Phys Rev B 66:073417

    Article  Google Scholar 

  28. Moon JM, An KH, Lee YH, Park YS, Bae DJ, Park GS (2001) J Phys Chem B 105:5677

    Article  CAS  Google Scholar 

  29. Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH (2001) J Phys Chem B 105:1157

    Article  CAS  Google Scholar 

  30. Harutyunyan AR, Pradhan BK, Chang J, Chen G, Eklund PC (2002) J Phys Chem B 106:8671

    Article  CAS  Google Scholar 

  31. Endo M, Lee BJ, Kim YA, Kim YJ, Muramatsu H, Yanagisawa T, Hayashi T, Terrones M, Dresselhaus MS (2003) New J Phys 5:121

    Article  Google Scholar 

  32. Bandow S, Rao AM, Williams KA, Thess A, Smalley RE, Eklund PC (1997) J Phys Chem B 101:8839

    Article  CAS  Google Scholar 

  33. Deng B, Xu A-W, Chen GY, Song R-Q, Chen L (2006) J Phys Chem B 110:11711

    Article  CAS  Google Scholar 

  34. Zhang L, Samulski ET (2004) Chem Phys Lett 398:505

    Article  CAS  Google Scholar 

  35. Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Chem Phys Lett 317:497

    Article  CAS  Google Scholar 

  36. Alvarez WE, Kitiyanan B, Borona A, Resasco DE (2001) Carbon 39:547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank CNPq for fellowships and financial support of the present work (CNPq/CT/Energ Nos 50.4222/2004-0 and 40.1494/2003-9) and FAPERJ (E-26/170.700/2004), “Grupo de Combustíveis Alternativos” at IFGW (UNICAMP) for the CNT samples and NUCAT/UFRJ for TPO analyses. CAS thanks Agência Nacional do Petróleo (ANP) for scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Rocco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocco, A.M., da Silva, C.A., Macedo, M.I.F. et al. Purification of catalytically produced carbon nanotubes for use as support for fuel cell cathode Pt catalyst. J Mater Sci 43, 557–567 (2008). https://doi.org/10.1007/s10853-007-1779-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1779-3

Keywords

Navigation