Skip to main content
Log in

Interphase layer theory and application in the mechanics of composite materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present research work the interphase layer model is developed as a continuum media with local cohesion and adhesion effects. By the model it was found that these effects can help to understand/predict macro/micro mechanics of the material, if the boundary conditions and phase effects are modeled across the length scales. This paper describes the kinematics of continuum media, the formulation of governing equations (fundamentals) and the statement of boundary conditions for multi-scale modeling of the material. An approach and the model has been validated to predict some basic mechanical properties of a polymeric matrix reinforced with nanoscale particles/fibres/tubes (including carbon nanotubes) as a function of size and also dispersion of nanoparticles. Presented mathematical model of an interphase layer allows estimating an interaction around and nearby interfaces of nanoparticle and material matrix. Using these approaches the prediction methodology and modeling tools have been developed by numerical simulations and analysis of the mechanical properties across the length scales. Results of the work will provide a platform for the development and understanding of nanoparticle-reinforced materials that are light-weight, vibration and shock resistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aifantis E (1994) J Mech Behav Mater 5(3):335

    Google Scholar 

  2. Aifantis E (1999) Int J Fracture 95:299

    Article  Google Scholar 

  3. Bakhvalov N, Panasenko G (1989) Homogenization: averaging processes in periodic media. Kluwer, Dordrecht/Boston/ London

  4. Bateman E, Erdeyi A (1955) Higher transcendental functions V 1–3. McGraw-Hill, New-York

    Google Scholar 

  5. Belov P, Lurie S (1998) Mechanics of solids. Allerton Press Mehanika tverdogo tela Inc 3:157

    Google Scholar 

  6. Bensoussan A, Lions J, Papanicolau G (1978) Asymptotic analysis for periodic structures. Amsterdam

  7. Budiansky B, O’Connell RJ (1976) Int J Solids Structures 12:81

    Article  Google Scholar 

  8. Christensen RM (1979) Mechanics of composite materials. J. Wiley & Sons. Inc

  9. De Wit R (1973) J Res Nat Bureau Standards 77A(3):359

    Google Scholar 

  10. Eshelby J (1957) Proc Roy Soc Lond

  11. Eshelby JD (1961) Elastic inclusions and inhomogeneities. In: Sneddon IN, Hill R (eds) Progress in solid mechanics 2. North-Holland, Amsterdam, pp 89–140

    Google Scholar 

  12. Fleck N, Hutchinson J (1993). J Mech Phys Solids 41:1825

    Article  Google Scholar 

  13. Fleck N, Hutchinson J (1997) Adv Appl Mech 33:295

    Article  Google Scholar 

  14. Gao H, Huang Y, Nix W, Hutvhinson J (1999) J Mech Solids 47:1239

    Article  Google Scholar 

  15. Gutkin M (2000) Rev Adv Mater Sci 1(1):27

    CAS  Google Scholar 

  16. Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova N (2003a) Int J Comp Mater Scs (3–4):529

    Article  Google Scholar 

  17. Lurie S, Belov P, Volkov-Bogorodsky D (2003b) Multiscale Modeling in the mechanics of materials: cohesion, interfacial interactions, Nanoparticles and Defects. In: Wendland LW (ed), Analysis and simulation of multifield problems, vol. 12 Springer, 2003; pp 101–110

  18. Lurie S, Belov P (2000) Monograph -Scientific publication of Computing Centre RAS

  19. Lurie S, Belov P, Tuchkova N (2005) Int J Comput Mater Sci A 36(2):145

    Google Scholar 

  20. Lurie S, Belov P (2005) Proceeding of the Conference “Advance problems of the mechanics of heterogeneous media”, Inst. of Appl. Mechanics, of Russian Acad. of Scs., Moscow, pp 235–268

  21. Lurie S, Hui D, Zubov V, Kireitseu M, Bochkareva L, Williams R, Tomlinson G (2006) International Journal of Computational Science and Engineering (IJCSE) (accepted)

  22. Lurie S, Belov P, Kalamkarov A (2005b) Int J Solid Structures 43(1):91

    Article  Google Scholar 

  23. Mindlin R (1964) Arch Ration Mech Anal 1:51

    Google Scholar 

  24. Mori T, Tanaka K (1973) Acta Metallurgica 21:571

    Article  Google Scholar 

  25. Mura T (1982) Micromechanics of defects in solids. Martinus Nijhoff Publishers

  26. Nemat-Nasser S, Iwakuma T, Hejazi M (1982) Mech Mater 1(3):239

    Article  Google Scholar 

  27. Novazki V (1975) Theory of elasticity. Moscow, Nauka publishers

    Google Scholar 

  28. Nunan K, Keller J (1984) J Mech Phys Solids 32(4):259

    Article  Google Scholar 

  29. Obraztsov I, Lurie S et al (2000) On the new cohesion field model in solid’, News High School, North – Caucasian Region, Vol. 3,pp 110–118

  30. Odegard G, Gates T (2002) In: Proceedings of Annual Conference on Experimental and Applied Mechanics, June, Milwaukee, WI

  31. Odegard G, Gates T, Nicolson L, Wise K (2002) NASA TM-2002–211454

  32. Riccardi A, Montheillet F (1999) Acta Mechanica 133:39

    Article  Google Scholar 

  33. Sangini AS Lu W (1987) J Mech Phys Solids 35(1):1

    Article  Google Scholar 

  34. Thostenson E, Ren Z, Chou T (2001) Composites Sci Technol 61:1899

    Article  CAS  Google Scholar 

  35. Tibbetts G, McHugh J (1999) J Mater Res 14:2871

    CAS  Google Scholar 

  36. Tucker I, Liang E (1999) Composites Sci Technol 59:655

    Article  Google Scholar 

  37. Vlasov V (1987) Boundary problems in domains with curvilinear boundary. M.: CCAS. (In Russian)

  38. Volkov-Bogorodsky DB (2000) In: Proceedings of the conference “Composite materials”. M.: IAM RAN, P. 44–56 (In Russian)

  39. Volkov-Bogorodsky DB (2005) Dynamic and technological problems of structural mechanics and continuous media”. Proceedings of the XI International Symposium. (Jaropolez, 14–18 February 2005). M.: MAI, P. 17–22 (In Russian)

  40. Wakashima K, Otsuka M, Umekawa S (1974). J Comp Mater 8:391

    CAS  Google Scholar 

  41. Zhang P, Huang Y, Geubelle P, Klein P, Hwang K (2002) Int J Solids Structures 39:3893

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the European Office of Aerospace Research and Development, for the financial support of this work (Int. Grant N 2154p) and the Russian Foundation for Basic Research Grant N 06- 01- 00051. The authors would like to thank Dr. Gregory A Schoeppner, PhD, and Dr. Yarve Endel PhD from Air Force Research Laboratory AFRL for interest and assistance of the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lurie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lurie, S., Belov, P., Volkov-Bogorodsky, D. et al. Interphase layer theory and application in the mechanics of composite materials. J Mater Sci 41, 6693–6707 (2006). https://doi.org/10.1007/s10853-006-0183-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0183-8

Keywords

Navigation