Skip to main content
Log in

A Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern and domain wall configuration with lattice defect concentration and temperature is simulated, predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms of the spontaneous polarization hysteresis and dielectric susceptibility as a function of temperature and defect concentration are successfully revealed by the simulation, demonstrating the applicability of the defect model and the simulation algorithm. A qualitative consistency between the simulated results and the properties of proton-irradiated ferroelectric copolymer is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. E. LINES and A. M. GLASSS, “Principles and applications of ferroelectrics and related materials” (Gordon and Breach, New York, 1977).

  2. I. S. ZHELUDEV, in “Solid State Physics,” edited by H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press, New York, 1971) Vol. 26, p. 429.

  3. L. E. CROSS, Ferroelectrics 76 (1987) 241.

    CAS  Google Scholar 

  4. A. P. LEVANYUK and A. S. SIGOV, Defects and structural phase transitions (Gordon and Breach, New York, 1988).

  5. N. ICHINOSE, Ferroelectrics 203 (1997) 187.

    CAS  Google Scholar 

  6. Q. M. ZHANG, J. ZHAO, T. R. SHROUT and L. E. CROSS, J. Mater. Res. 12 (1997) 1777.

    CAS  Google Scholar 

  7. C. H. PARK and D. J. CHADI, Phys. Rev. B. 57 (1998) 13961.

    Article  Google Scholar 

  8. Z. WU, W. DUAN, Y. WANG, B. L. GU and X. W. ZHANG, ibid. 67 (2003) 052101.

    Article  Google Scholar 

  9. B. E. VUGMEISTER and M. D. GLINCHUK, Rev. Mod. Phys. 62 (1990) 993.

    Article  CAS  Google Scholar 

  10. E. COURTENS, Phys. Rev. Lett. 52 (1984) 69.

    Article  CAS  Google Scholar 

  11. A. K. TAGANTSEV, ibid. 72 (1994) 1100.

    Article  CAS  Google Scholar 

  12. C. C. SU, B. VUGMEISTER and A. G. KHACHATURYAN, J. Appl. Phys. 90 (2001) 6345.

    Article  CAS  Google Scholar 

  13. R. FISCH, Phys. Rev. B. 67 (2003) 094110.

    Article  Google Scholar 

  14. D. VIEHLAND, S. J. JANG and L. E. CROSS, J. Appl. Phys. 68 (1990) 2916.

    Article  CAS  Google Scholar 

  15. C. RANDALL, D. J. BARBER, R. W. WHATMORE and P. GROVES, J. Mater. Sci. 21 (1987) 4456.

    Article  Google Scholar 

  16. X. H. DAI, Z. XU and D. VIEHLAND, Philos. Mag. B. 70 (1994) 33.

    CAS  Google Scholar 

  17. G. Smolenski and A. Agranovska, Sov. Phys. Solid State 1 (1960) 1429.

    Google Scholar 

  18. A. J. LOVINGER, Macromolecules 18 (1985) 910.

    Article  CAS  Google Scholar 

  19. B. DAUDIN, M. DUBUS, F. MACCHI and L. F. LEGRAND, Nucl. Inst. Meth. Phys. Res. B 32 (1988) 177.

    Article  Google Scholar 

  20. Q. M. ZHANG, V. BHARTI and X. ZHAO, Science 280 (1998) 2101.

    Article  CAS  Google Scholar 

  21. S. SEMENOVSKAYA and A. G. KHACHATURYAN, J. Appl. Phys. 83 (1998) 5125.

    Article  CAS  Google Scholar 

  22. J.-M. LIU, X. WANG, H. L. W. CHAN and C. L. CHOY, Phys. Rev. B.69 (2004) 094114.

    Article  Google Scholar 

  23. X. WANG, J.-M. LIU, H. L. W. CHAN and C. L. CHOY, J. Appl. Phys. 95 (2004) 4282.

    Article  CAS  Google Scholar 

  24. J.-M. LIU, K. F. WANG, S. T. LAU, H. L. W. CHAN and C. L. CHOY, Comput. Mater. Sci. 33 (2005) 66.

    Article  CAS  Google Scholar 

  25. S. T. LAU, H. L. W. CHAN and C. L. CHOY, Appl. Phys. A 80 (2005) 289–294.

    Google Scholar 

  26. H. L. HU and L. Q. CHEN, Mater. Sci. & Eng. A 238 (1997) 182; J. Am. Ceram. Soc. 81 (1998) 492.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JM., Lau, S.T., Chan, H.L.W. et al. A Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics. J Mater Sci 41, 163–175 (2006). https://doi.org/10.1007/s10853-005-6016-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-6016-3

Keywords

Navigation