Skip to main content
Log in

Comparison of the intergranular segregation for eight dilute binary metallic systems in the Σ 11′ {332} tilt grain boundary

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Intergranular segregation is studied in the limit of infinitely diluted solution for eight dilute metallic systems made of four face centred cubic metals, one transition metal, nickel, and three noble metals, copper, silver and gold. The grain boundary (GB) chosen is the symmetrical tilt Σ = 11′ {332} 〈110〉 GB with its characteristic “zigzag” structural pattern as numerically calculated and experimentally observed by high resolution transmission electronic microscopy in nickel. The metallic interactions are modelled with Finnis-Sinclair like potentials. The atomic sites are characterised by a geometrical parameter defined with their exact Voronoï’ volumes and the tensor of the stresses locally exerted. The {332} GB presents the most diversity of sites in these respects. The segregation energies are computed and analysed versus the only two ‘driving forces’ which can play a role in metallic intergranular segregation, viz. the elastic size effect and the excess cohesion energy effect. The elastic size effect calculated by the method of virtual impurity represents the main segregation driving force in most cases of the considered systems. It is worth noting however that the excess cohesion energy effect is important for non hydrostatic or compressive sites. It can even be predominant, as in the case of Ni(Cu).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. W. BALLUFFI, in “Interfacial Segregation”, edited by W. C. Johnson and J. M. Blakely (American Society for Metals, Metal Park, Ohio, 1979) p. 193.

    Google Scholar 

  2. C. L. BRIANT, in “Materials Interfaces: Atomic-level Structures and Properties, ” edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992) p. 463.

    Google Scholar 

  3. S. M. FOILES and D. N. SEIDMAN, in “Materials Interfaces: Atomic-level Structures and Properties, ” edited by D. Wolf and S. Yip (Chapman & Hall, London, 1992) p. 497.

    Google Scholar 

  4. P. LEJCEK and S. HOFMANN, Crit. Rev. Sol. St. Mat. Sci. 20 (1995) 1.

    Google Scholar 

  5. A. P. SUTTON and R. W. BALLUFFI, in “Interfaces in Crystalline Solids” (Oxford University Press, New York, 1995).

    Google Scholar 

  6. E. D. HONDROS, M. P. SEAH, S. HOFFMAN and P. LEJCEK, in “Physical Metallurgy, ” 4th, revised, edn, edited by R. W. Cahn and P. Haasen (North Holland, Amsterdam, 1996) Vol. II, p. 1201.

  7. A. P. SUTTON and V. VITEK, Acta Metall. 30 (1982) 2011.

    Article  Google Scholar 

  8. D. WOLF, in “Character of Grain Boundaries, ” Advances in Ceramics, edited by M. F. Yan and A. H. Heuer (The American Ceramic Society, Inc., Colombus, 1983) Vol. 6.

    Google Scholar 

  9. V. VITEK and G. J. WANG, Surf. Sci 144 (1984) 110.

    Article  Google Scholar 

  10. M. HASHIMOTO, Y. ISHIDA, S. WAKAYAMA, R. YAMAMOTO, M. DOYAMA and T. FUJIWARA, Acta metall 32 (1984) 13.

    Article  Google Scholar 

  11. A. LARERE, K. I. MASUDA-JINDO, R. YAMAMOTO and M. DOYAMA, in “Grain Boundary Structure and Related Phenomena, ” Proceedings of JIMIS-4 (The Japan Institute of Metals, Sendai, 1986) p. 229.

  12. T. A. ARIAS and J. D. JOANNOPOULOS, Phys. Rev. Lett 69 (1992) 3330.

    Article  PubMed  Google Scholar 

  13. M. MENYHARD, MIN YAN and V. VITEK, Acta Metall. Mater 4 (1994) 2783.

    Google Scholar 

  14. A. MAITI, M. F. CHILSHOLM, S. J. PENNYCOCK and S. T. PANTELIDES, Phys. Rev. Lett 77 (1996) 1306.

    Article  PubMed  Google Scholar 

  15. H. HUANG, T. DIAZ DE LA RUBIA and M. J. FLUSS, Mater. Res. Soc. Symp. Proc 428 (1996) 177.

    Google Scholar 

  16. J. D. RITTNER and D. N. SEIDMAN, Acta mater 45 (1997) 3191.

    Article  Google Scholar 

  17. D. UDLER and D. N. SEIDMAN, ibid 46 (1998) 1221.

    Article  Google Scholar 

  18. X.-Y. LIU, W. XU, S. M. FOILES and J. B. ADAMS, Appl. Phys. Let 71 (1998) 1578.

    Google Scholar 

  19. L. G. WANG and C. Y. WANG, Mater. Sci. Forum 294–296 (1999) 489.

    Google Scholar 

  20. W. T. GENG, A. J. FREEMAN, R. WU, C. B. GELLER and J. E. RAYNOLD, Phys. Rev. B 60 (1999) 7149.

    Article  Google Scholar 

  21. F. BERTHIER, B. LEGRAND and G. TRÆGLIA, Acta Mater 9 (1999) 2705.

    Article  Google Scholar 

  22. J. CREUZE, Defect and Diffusion Forum 203–205 (2002) 3.

    Google Scholar 

  23. R. JANISCH and C. ELSÄSSER, Phys. Rev. B 67 (2003) 224101.

    Google Scholar 

  24. B. LEZZAR, O. KHALLFALLAH, A. LARERE, V. PAIDAR and O. HARDOUIN DUPARC, Acta mater. 52 (2004) 2809.

    Article  Google Scholar 

  25. P. WYNBLATT and R. C. KU, Surf. Sci 65 (1977) 511.

    Article  Google Scholar 

  26. Idem, in “Interfacial Segregation, ” edited by W. C. Johnson and J. M. Blakely (ASM, Metals Park, Ohio, 1979) p. 115.

    Google Scholar 

  27. G. TRÆGLIA, B. LEGRAND and F. DUCASTELLE, Europhys. Lett 7 (1988) 575.

    Google Scholar 

  28. F. DUCASTELLE, B. LEGRAND and G. TRÆGLIA, Suppl. Prog. Theor. Phys 101 (1990) 159.

    Google Scholar 

  29. R. HULTGREN, P. D. DESAY, D. T. HAWKINS, M. GLEISER and K. K. KELLY (Eds.), in “Selected Values of the Thermodynamic Properties of Metals and Binary Alloys” (John Wiley, New York, 1973).

    Google Scholar 

  30. T. B. MASSALSKI (Ed.), in “Binary Alloys Phase Diagrams” (American Society for Metals, Metal Park, Ohio, 1986).

    Google Scholar 

  31. W. HUME ROTHERY, J. Inst. Metals 35 (1926) 295. Also see his “Atomic Theory for the Students of Metallurgy” (The Institute of Metals, London, 1955, 1960).

    Google Scholar 

  32. M. W. FINNIS and J. E. SINCLAIR, Phil. Mag A50 (1984) 45.

    Google Scholar 

  33. V. ROSATO, M. GUILLOPÆ and B. LEGRAND, ibid A59 (1989) 321.

    Google Scholar 

  34. C. KITTEL, in “Introduction to Solid State Physics” 7th (ed.), (John Wiley & Sons, Inc., New York, 1996).

    Google Scholar 

  35. M. S. DAW and M. I. BASKES, Phys. Rev. B 29 (1984) 6443.

    Article  Google Scholar 

  36. J. FRIEDEL, in “The Physics of Metals, ” edited by J. M. Ziman (Cambridge University Press, Cambridge, England, 1978) p. 341.

    Google Scholar 

  37. G. J. ACKLAND, G. TICHY, V. VITEK and M. W. FINNIS, Phil. Mag A56 (1987) 735.

    Google Scholar 

  38. J. H. ROSE, J. FERRANTE and J. R. SMITH, Phys. Rev. Lett 47 (1981) 675.

    Google Scholar 

  39. H. J. WOLLENBERGER, in Physical Metallurgy, 4th revised, edn., edited by R. W. Cahn and P. Haasen (Elsevier Science, Amsterdam, 1996), p. 1621.

  40. L. E. MURR, in “Interfacial Phenomena in Metals and Alloys” (Addison-Wesley, Reading, Massachusetts, 1975).

    Google Scholar 

  41. D. J. H. COCKAYNE, M. L. JENKINS and I. L. F. RAY, Phil. Mag 24 (1971) 1383.

    Google Scholar 

  42. M. L. JENKINS, ibid A26 (1972) 747.

    Google Scholar 

  43. J. EYMERY, F. LANCON and L. BILLARD, J. Phys. I France 3 (1993) 787.

    Article  Google Scholar 

  44. P. PYYKKÖ, Chem. Rev 97 (1977) 597.

    Article  Google Scholar 

  45. P. PYYKKÖ and J. P. DESCLAUX, Accounts of Chem. Res 12 (1979) 276.

    Article  Google Scholar 

  46. J. R. BEELER JR. and G. L. KULCINSKI, in “Interatomic Potentials and Simulations of Lattice Defects, ” edited by P. C. Gehlen, J. R. Beeler Jr. and R. I. Jaffe (Plenum Press, New York, 1972) p. 735.

    Google Scholar 

  47. O. HARDOUIN DUPARC and M. TORRENT, Interf. Sci 2 (1994) 7.

    Google Scholar 

  48. V. VITEK and T. EGAMI, Phys. Stat. Sol B144 (1987) 145.

    Google Scholar 

  49. G. P. LEJEUNE DIRICHLET, Journal fur die reine und angewandte Mathematik 40 (1850) 209.

    Google Scholar 

  50. G. F. VORONOÏ, Journal für die reine und angewandte Mathematik 133 (1908) 97; ibid 134 (1908) 198; ibid. 136 (1909) 67.

  51. J. H. CONWAY and N. J. A. SLOANE, in “Sphere Packings, Lattices and Groups” (Springer-Verlag, New York, 1993).

    Google Scholar 

  52. B. C. RAPAPORT, in “The Art of Molecular Dynamics” (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  53. R. DEFAY and I. PRIGOGINE, in “Tension Superficielle et Adsorption” (Desoer, Liege, 1951); with A. Bellemans, translated by D. H. Everett, Surface Tension and Adsorption (Longmans, London, 1966).

  54. D. MCLEAN, in “Grain Boundaries in Metals” (Oxford University Press, London, 1957).

    Google Scholar 

  55. B. J. PINES, J. Phys (Moscow, Acad. USSR) 3 (1940) 309.

    Google Scholar 

  56. J. FRIEDEL, Advan. Phys 3 (1954) 446.

    Google Scholar 

  57. J. D. ESHELBY, Adv. Solid State Phys 3 (1956) 79.

    Google Scholar 

  58. G. TREGLIA and B. LEGRAND, Phys. Rev. B 35 (1987) 4338.

    Article  Google Scholar 

  59. O. HARDOUIN DUPARC, not yet published note.

  60. J. D. RITTNER and D. N. SEIDMAN, Phys. Rev. B 54 (1996) 6999.

    Article  Google Scholar 

  61. V. PAIDAR, A. LARERE and L. PRIESTER, in “Interface Science and Materials Interconnection, ” in Proceedings of JIMIS-8 (The Japan Institute of Metals, Sendai, 1997) p. 523.

  62. O. HARDOUIN DUPARC, S. POULAT, A. LARERE, J. THIBAULT and L. PRIESTER, Phil. Mag A80 (2000) 853.

    Google Scholar 

  63. E. S. MACHLIN, Scripta Metall. 14 (1980) 125.

    Article  Google Scholar 

  64. D. UDLER and D. N. SEIDMAN, Phys. Rev. B 54 (1996) 11133.

    Article  Google Scholar 

  65. A. LARERE, M. GUILLOPE and K. I. MASUDA-JINDO, J. Phys. Colloq. France 49 (1988) C5-47.

    Google Scholar 

  66. E. ZEN, Amer. Mineral 41 (1951) 523.

    Google Scholar 

  67. J. FRIEDEL, Phil. Mag 46 (1955) 514.

    Google Scholar 

  68. C. D. GELATT and H. EHRENREICH, Phys. Rev. B 10 (1974) 398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hardouin Duparc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duparc, O.H., Larere, A., Lezzar, B. et al. Comparison of the intergranular segregation for eight dilute binary metallic systems in the Σ 11′ {332} tilt grain boundary. J Mater Sci 40, 3169–3176 (2005). https://doi.org/10.1007/s10853-005-2680-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2680-6

Keywords

Navigation