Skip to main content
Log in

A Hybrid of the Newton-GMRES and Electromagnetic Meta-Heuristic Methods for Solving Systems of Nonlinear Equations

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

Solving systems of nonlinear equations is perhaps one of the most difficult problems in all numerical computation. Although numerous methods have been developed to attack this class of numerical problems, one of the simplest and oldest methods, Newton’s method is arguably the most commonly used. As is well known, the convergence and performance characteristics of Newton’s method can be highly sensitive to the initial guess of the solution supplied to the method. In this paper a hybrid scheme is proposed, in which the Electromagnetic Meta-Heuristic method (EM) is used to supply a good initial guess of the solution to the finite difference version of the Newton-GMRES method (NG) for solving a system of nonlinear equations. Numerical examples are given in order to compare the performance of the hybrid of the EM and NG methods. Empirical results show that the proposed method is an efficient approach for solving systems of nonlinear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allgower, E.L., Georg, K. (eds.): Computational Solution of Nonlinear Systems of Equations. American Mathematical Society, Providence (1990)

    MATH  Google Scholar 

  2. Merlet, J.P.: The COPRIN examples. http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html (2006)

  3. Pinter, J.D.: Computational Global Optimization in Nonlinear Systems: An Interactive Tutorial. Lionhart, Atlanta (2001)

    MATH  Google Scholar 

  4. Broyden, C.G., Luss, D.: A class of methods for solving nonlinear simultaneous equation. Math. Comput. 19, 577–593 (1965)

    Article  MATH  Google Scholar 

  5. Martínez, J.M.: Algorithms for Solving Nonlinear Systems of Equations, pp. 81–108. Continuous Optimization (1994)

  6. Hribar, M.B.: Methods for large-scale nonlinear programming and nonlinear systems of equations. Ph.D. dissertation, EECS Department, Northwestern University (1997)

  7. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  8. Rheinboldt, W.C.: Methods for Solving Systems of Nonlinear Equations, 2nd edn. SIAM, Philadelphia (1998)

    MATH  Google Scholar 

  9. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brown, P.N.: A local convergence theory for combined inexact-Newton/finite-difference projection methods. SIAM J. Numer. Anal. 24(2), 407–434 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brown, P.N., Saad, Y.: Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Statist. Comput. 11(3), 450–481 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Morini, B.: Convergence behaviour of inexact Newton methods. Math. Comp. 68, 1605–1613 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Argyros, I.K.: Convergence rates for inexact Newton-like methods at singular points and applications. Appl. Math. Comput. 102, 185–201 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zecevic, A.I., Siljak, D.D.: A block-parallel Newton method via overlapping epsilon decompositions. SIAM J. Matrix Anal. Appl. 15(3), 824–844 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yang, G., Dutto, L.C., Fortin, M.: Inexact block Jacobi-Broyden methods for solving nonlinear systems of equations. SIAM J. Sci. Comput. 18(5), 1367–1392 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Xu, J.J.: Convergence of partially asynchronous block Quasi-Newton methods for nonlinear systems of equations. J. Appl. Math. Comput. 103, 307–321 (1999)

    Article  MATH  Google Scholar 

  17. Saad, Y.: Krylov subspace methods for solving unsymmetric linear systems. Math. Comp. 37, 105–126 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Heyouni, M.: Newton generalized Hessemberg method for solving nonlinear systems of equations. Numer. Agorithms 21, 225–246 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  21. Dennis, J.E., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  22. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2000)

    Google Scholar 

  23. Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. J. Glob. Optim. 25, 263–282 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Grosan, C., Abraham, A., Gelbukh, A.: Evolutionary Method for Nonlinear Systems of Equations. MICAI 2006: Advances in Artificial Intelligence, pp. 283–293. Springer, Berlin (2006)

    Book  Google Scholar 

  25. Effati, S., Nazemi, A.R.: A new method for solving a system of the nonlinear equations. Appl. Math. Comput. 168, 877–894 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Luksan, L.: Inexact trust region method for large sparse systems of nonlinear equations. J. Optim. Theory Appl. 81(3), 569–590 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bogle, I.D.L., Perkins, J.D.: A new sparsity-preserving Quasi-Newton update for solving nonlinear equations. SIAM J. Sci. Statist. Comput. 11, 621–630 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Moré, J.J., Garbow, B.S., Hillström, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)

    Article  MATH  Google Scholar 

  29. Toint, P.L.: Numerical solution of large sets of algebraic equations. Math. Comput. 46, 175–189 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gomez-Ruggiero, M.A., Martínez, J.M., Moretti, A.C.: Comparing algorithms for solving sparse nonlinear systems of equations. SIAM J. Sci. Statist. Comput. 13, 459–483 (1992)

    Article  MathSciNet  Google Scholar 

  31. Li, G.: Successive column correction algorithms for solving sparse nonlinear systems of equations. Math. Program. 43, 187–207 (1989)

    Article  MATH  Google Scholar 

  32. Friedlander, A., Gomes-Ruggiero, M.A., Kozakevich, D.N., Martinez, J.M., Santos, S.A.: Solving nonlinear systems of equations by means of Quasi-Newton methods with nonmonotone strategy. Optim. Methods Softw. 87, 25–51 (1997)

    Article  MathSciNet  Google Scholar 

  33. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Taheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toutounian, F., Saberi-Nadjafi, J. & Taheri, S.H. A Hybrid of the Newton-GMRES and Electromagnetic Meta-Heuristic Methods for Solving Systems of Nonlinear Equations. J Math Model Algor 8, 425–443 (2009). https://doi.org/10.1007/s10852-009-9117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10852-009-9117-1

Keywords

AMS Subject Classifications

Navigation