Skip to main content
Log in

A Least Squares Solution for Camera Distortion Parameters

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Most applications in optical metrology need a well calibrated camera. In particular, a calibrated camera includes a distortion mapping, parameters of which are determined in a final non-linear optimization over all camera parameters. In this article we present a closed form solution for the distortion parameters provided that all other camera parameters are known. We show that for radial, tangential, and thin prism distortions the determination of the parameters form a linear least squares problem. Therefore, a part of the camera calibration error function can be minimized by linear methods in closed form: We are able to decouple the calculation of the distortion parameters from the non-linear optimization. The number of parameters in the non-linear minimization are reduced. Several experimental results confirm the benefit of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alvarez, L., Gomez, L., Sendra, J.: Accurate depth dependent lens distortion models: an application to planar view scenarios. J. Math. Imaging Vis. 39, 75–85 (2011)

    Article  MathSciNet  Google Scholar 

  2. van Assen, H.C., Egmont-Petersen, M., Reiber, J.H.C.: Accurate object localization in gray level images using the center of gravity measure: accuracy versus precision. IEEE Trans. Image Process., 1379–1384 (2002)

  3. Atkinson, K. (ed.): Close Range Photogrammetry and Machine Vision. Whittles Publishing, Caithness (1996)

    Google Scholar 

  4. Björck, A.A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  5. Bradski, G.: OpenCV: examples of use and new applications in stereo, recognition and tracking. In: Vision Interface, p. 347 (2002)

    Google Scholar 

  6. Brown, D.C.: The bundle adjustment—progress and prospectives. Int. Arch. Photogramm. 21(3), 1–33 (1976)

    Google Scholar 

  7. Claus, D., Fitzgibbon, A.W.: A rational function lens distortion model for general cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 213–219 (2005)

    Google Scholar 

  8. Devernay, F., Faugeras, O.: Straight lines have to be straight: automatic calibration and removal of distortion from scenes of structured environments. Mach. Vis. Appl. 13(1), 14–24 (2001)

    Article  Google Scholar 

  9. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. John Hopkins University, Baltimore (1996)

    MATH  Google Scholar 

  10. Graf, S., Hanning, T.: Analytically solving radial distortion parameters. In: Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 1104–1109. IEEE, San Diego (2005)

    Google Scholar 

  11. Hanning, T.: High Precision Camera Calibration. Vieweg + Teubner, Wiesbaden (2010)

    Google Scholar 

  12. Hanning, T., Schöne, R., Graf, S.: A closed form solution for monocular re-projective 3D pose estimation of regular planar patterns. In: International Conference of Image Processing (ICIP), Atlanta, Georgia, pp. 2197–2200 (2006)

    Google Scholar 

  13. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Heikkilä, J.: Geometric camera calibration using circular control points. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1066–1077 (2000)

    Article  Google Scholar 

  15. Heikkilä, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1106–1112. IEEE, San Juan (1997)

    Google Scholar 

  16. Luhmann, T., Robson, S., Kyle, S., Harley, I.: Close Range Photogrammetry: Principles, Techniques and Applications. Wiley, New York (2007)

    Google Scholar 

  17. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C the Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

  18. Slama, C. (ed.): Manual of Photogrammetry 4th edn. American Society of Photogrammetry & Remote Sensing, Virginia (1980)

    Google Scholar 

  19. Spellucci, P.: Numerische Verfahren der Nichtlinearen Optimierung. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  20. Sturm, P.F., Maybank, S.J.: On plane-based camera calibration: a general algorithm, singularities, applications. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 432–437 (1999)

    Google Scholar 

  21. Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Triggs, W., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice. LNCS, pp. 298–375. Springer, Berlin (2000)

    Chapter  Google Scholar 

  22. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  23. Valkenburg, R.J., Evans, P.L.: Lens distortion calibration by straightening lines. In: Proceedings of Image and Vision Computing, Auckland, NZ, pp. 65–69 (2002)

    Google Scholar 

  24. de Villiers, J.: Modeling of radial asymmetry in lens distortion facilitated by modern optimization techniques. In: Proceedings of the 2010 Electronic Imaging Conference, EI2010, vol. 10, pp. 1–8 (2010)

    Google Scholar 

  25. Wang, J., Shi, F., Zhang, J., Liu, Y.: A new calibration model of camera lens distortion. Pattern Recognit. 41(2), 607–615 (2008)

    Article  MATH  Google Scholar 

  26. Wei, G.Q., Ma, S.D.: Implicit and explicit camera calibration: theory and experiments. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 469–480 (1994)

    Article  Google Scholar 

  27. Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 14(10), 965–980 (1992)

    Article  Google Scholar 

  28. Yang, Z., Chen, F., Zhao, J., Zhao, H.: A novel camera calibration method based on genetic algorithm. In: 3rd IEEE Conference on Industrial Electronics and Applications. ICIEA 2008, pp. 2222–2227 (2008)

    Chapter  Google Scholar 

  29. Zhang, Z.: On the epipolar geometry between two images with lens distortion. In: Proceedings of the International Conference on Pattern Recognition, Vienna, Austria, vol. I, pp. 407–411 (1996)

    Chapter  Google Scholar 

  30. Zhang, Z.: A flexible new technique for camera calibration. Technical Report MSR-TR-98-71. Microsoft Research (1998)

  31. Zhou, G.: Accurate determination of ellipse centers in digital imagery. Annu. Convent. Am. Soc. Photogramm. Remote Sens. 4, 256–264 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Hanning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanning, T. A Least Squares Solution for Camera Distortion Parameters. J Math Imaging Vis 45, 138–147 (2013). https://doi.org/10.1007/s10851-012-0350-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0350-2

Keywords

Navigation