Skip to main content
Log in

On the Curve Reconstruction in Riemannian Manifolds

Ordering Motion Frames

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this article we extend the computational geometric curve reconstruction approach to the curves embedded in the Riemannian manifold. We prove that the minimal spanning tree, given a sufficiently dense sample, correctly reconstructs the smooth arcs which can be used to reconstruct closed and simple curves in Riemannian manifolds. The proof is based on the behavior of the curve segment inside the tubular neighborhood of the curve. To take care of the local topological changes of the manifold, the tubular neighborhood is constructed in consideration with the injectivity radius of the underlying Riemannian manifold. We also present examples of successfully reconstructed curves and show applications of curve reconstruction to ordering motion frames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. We restrict out attention to smooth curves, i.e. curves which are C .

  2. Homeomorphic here can be replaced by diffeomorphic for a differentiable manifold.

  3. For notations and definitions of basic differential geometric terms, we refer to [12].

References

  1. Altafini, C.: The de Casteljau algorithm on se(3). In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds.) Nonlinear Control in the Year 2000. Lecture Notes in Control and Information Sciences, vol. 258, pp. 23–34. Springer, Berlin (2000). http://dx.doi.org/10.1007/BFb0110205.10.1007/BFb0110205

    Chapter  Google Scholar 

  2. Althaus, E., Mehlhorn, K.: Polynomial time tsp-based curve reconstruction. In: Proc 11th ACM-SIAM Sympos Discrete Algorithms, pp. 686–695 (2000)

    Google Scholar 

  3. Althaus, E., Mehlhorn, K., Näher, S., Schirra, S.: Experiments on curve reconstruction. In: Proc. 2nd Workshop Algorithm Eng. Exper, pp. 103–114 (2000)

    Google Scholar 

  4. Amenta, N., Bern, M., Eppstein, D.: The crust and the β-skeleton: combinatorial curve reconstruction. Graph. Models Image Process. 60, 125–135 (1998)

    Article  Google Scholar 

  5. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fibre tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)

    Article  Google Scholar 

  6. Bougleux, S., Peyre, G., Cohen, L.: Anisotropic geodesics for perceptual grouping and domain meshing. In: ECCV2008, vol. 5303, pp. 129–142 (2008). http://www.springerlink.com/index/t10k26241022w670.pdf

    Google Scholar 

  7. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Basel (1992)

    MATH  Google Scholar 

  8. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  9. Dey, T.K., Kumar, P.: A simple provable curve reconstruction algorithm. In: Proc. 10th Ann. ACM-SIAM Symp. Discrete Algorithms (1999)

    Google Scholar 

  10. Edelsbrunner, H.: Shape reconstruction with Delaunay complex. In: LNCS 1380, LATIN’98: Theoretical Informatics, pp. 119–132 (1998)

    Chapter  Google Scholar 

  11. de Figueiredo, L.H., de Miranda Gomes, J.: Computational morphology of curves. Vis. Comput. 11, 105–112 (1994)

    Article  Google Scholar 

  12. Gray, A., Abbena, E., Salamon, S.: Modern differential geometry of curves and surfaces with mathematica. In: Studies in Advanced Mathematics. Chapman & Hall, London (2006)

    Google Scholar 

  13. Kim, M.J., Kim, M.S., Shin, S.Y.: A c 2-continuous b-spline quaternion curve interpolating a given sequence of solid orientations. Computer Animation 72 (1995). http://doi.ieeecomputersociety.org/10.1109/CA.1995.393545

  14. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. In: Proc. of National Academy of Sciences, USA, vol. 95, pp. 8431–8435 (1998)

    Google Scholar 

  15. Leibon, G., Letscher, D.: Delaunay triangulations and Voronoi diagrams for Riemannian manifolds. In: Symposium on Computational Geometry, pp. 341–349 (2000)

    Google Scholar 

  16. Li, J., Hao, P.-w.: Smooth interpolation on homogeneous matrix groups for computer animation. J. Zhejiang Univ. Sci. 7, 1168–1177 (2006). http://dx.doi.org/10.1631/jzus.2006.A1168.10.1631/jzus.2006.A1168

    Article  MATH  Google Scholar 

  17. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Intl. Joint. Conf. on Artificial Intelligence (1981)

    Google Scholar 

  18. Mansouri, A.R., Mukherjee, D.P., Acton, S.T.: Constraining active contour evolution via Lie groups of transformation. IEEE Trans. Image Process. 13(6), 853–863 (2004). http://viva.ee.virginia.edu/publications/04_Constraining.pdf

    Article  MathSciNet  Google Scholar 

  19. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  20. Park, F.C.: Distance metrics on the rigid-body motions with applications to mechanism design. J. Mech. Des. 117(1), 48–54 (1995)

    Article  Google Scholar 

  21. Park, F.C., Ravani, B.: Smooth invariant interpolation of rotations. ACM Trans. Graph. 16(3), 277–295 (1997)

    Article  Google Scholar 

  22. Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH Comput. Graph. 19(3), 245–254 (1985). http://doi.acm.org/10.1145/325165.325242

    Article  Google Scholar 

  23. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 1. Publish or Perish, Berkeley (1999). http://www.jstor.org/stable/2319112?origin=crossref

    MATH  Google Scholar 

  24. Wang, Y., Wang, D., Bruckstein, A.M.: On variational curve smoothing and reconstruction. J. Math. Imaging Vis. 37(3), 183–203 (2010)

    Article  MathSciNet  Google Scholar 

  25. Zefran, M., Kumar, V., Croke, C.: On the generation of smooth three-dimensional rigid body motions. IEEE Trans. Robot. Autom. 14(4), 576–589 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Prof. Gautam Dutta for discussions on the proof of the results in this article. The authors would also like to thank the resource center DAIICT for providing references needed for the work carried out. We acknowledge INRIA, Gamma researcher’s team, http://www-roc.inria.fr/gamma/gamma/disclaimer.php, for their 3D-mesh files which we have used for simulations. We also like to thank anonymous referees for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Shah.

Appendix: Exponential and Logarithmic Maps

Appendix: Exponential and Logarithmic Maps

A1

Given [ω]∈so(3),

$$ \exp[\omega]=I + \frac{\sin\Vert \omega \Vert}{\Vert \omega \Vert}\cdot[\omega]+ \frac{1-\cos\Vert \omega \Vert}{\Vert \omega \Vert^2}\cdot [ \omega]^2 $$
(19)

A2

Let (ω,v)∈se(3). Then

$$ \exp \left [\begin{array}{c@{\quad}c} [\omega] & v\\ 0 & 0 \end{array} \right ] = \left [\begin{array}{c@{\quad}c} \exp[\omega] & Av\\ 0 & 1 \end{array} \right ] $$
(20)

where

$$A = I+\frac{1-\cos\Vert\omega\Vert}{\Vert\omega\Vert^2}\cdot [\omega]+ \frac{\Vert\omega\Vert-\sin\Vert\omega\Vert}{\Vert\omega\Vert^3}\cdot[ \omega]^2 $$

A3

Given θSO(3) such that \(\operatorname{Tr}(\theta)\neq -1\). Then

$$ \log(\theta) = \frac{\phi}{2 \sin\phi}\bigl(\theta-\theta^T\bigr) $$
(21)

where ϕ satisfies \(1+2 \cos\phi = \operatorname{Tr}(\theta)\), |ϕ|<π. Further more, ∥logθ2=ϕ 2.

A4

Suppose θSO(3) such that \(\operatorname{Tr}(\theta)\neq -1\), and let b∈ℝ3. Then

$$ \log \left [\begin{array}{c@{\quad}c} \theta & b\\ 0 & 1 \end{array} \right ] = \left [\begin{array}{c@{\quad}c} [\omega] & A^{-1}b\\ 0 & 0 \end{array} \right ] $$
(22)

where [ω]=logθ, and

$$A^{-1}= I-\frac{1}{2}\cdot[\omega]+\frac{2\sin\Vert\omega\Vert-\Vert\omega\Vert(1+\cos\Vert\omega\Vert)}{ 2\Vert\omega\Vert^2\sin\Vert\omega\Vert}\cdot[ \omega]^2 $$

A5

Let θ 1,θ 2SO(3). Then the distance L=d(θ 1,θ 2) induced by the standard bi-invariant metric on SO(3) is

$$ d(\theta_1,\theta_2)=\bigl\Vert \log\bigl( \theta_1^{-1} \theta_2\bigr)\bigr\Vert $$
(23)

where ∥⋅∥ denotes the standard Euclidean norm.

A6

Let X 1=(θ 1,b 1) and X 2=(θ 2,b 2) be two points in SE(3). Then the distance L=d(X 1,X 2) induced by the scale dependent left-invariant metric on SE(3) is

$$ d(X_1,X_2)=\sqrt{c\bigl\Vert \log\bigl( \theta_1^{-1} \theta_2\bigr) \bigr\Vert^2+d\Vert b_2-b_1 \Vert^2} $$
(24)

where ∥⋅∥ denotes the Euclidean norm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, P., Chatterji, S. On the Curve Reconstruction in Riemannian Manifolds. J Math Imaging Vis 45, 55–68 (2013). https://doi.org/10.1007/s10851-012-0344-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0344-0

Keywords

Navigation