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Abstract In this article we extend the computational geo-
metric curve reconstruction approach to the curves embed-
ded in the Riemannian manifold. We prove that the minimal
spanning tree, given a sufficiently dense sample, correctly
reconstructs the smooth arcs which can be used to recon-
struct closed and simple curves in Riemannian manifolds.
The proof is based on the behavior of the curve segment in-
side the tubular neighborhood of the curve. To take care of
the local topological changes of the manifold, the tubular
neighborhood is constructed in consideration with the in-
jectivity radius of the underlying Riemannian manifold. We
also present examples of successfully reconstructed curves
and show applications of curve reconstruction to ordering
motion frames.

Keywords Curve reconstruction · Riemannian manifold ·
Video frame ordering · Ordering rotations

1 Introduction

The curve reconstruction problem can be thought of as con-
nect the dots. Idea is quite similar to the Nyquist’s sampling
theorem for band limited signals in signal processing. The
only difference is in terms of ordering of the sample. Unlike
in the latter case, the ordering is lost when we have a sample
of data points of a curve. Thus the problem of curve recon-
struction first requires to establish a proper sampling crite-
rion. Next, to give a provable ordering algorithm based on
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the suggested sampling criterion. Finally the problem ends
with an interpolation scheme to join the samples based on
some smoothness constraints. Nature of problem to be dealt
with in this article corresponds to the former one. Suppose
an object in R

3 is in motion and we have captured some
frames of this motion. But these frames are jumbled up, i.e.
the ordering is lost. Reconstruct the original motion given
that the frames captured form a dense sample set.

Think of a graphic game designer designing a game. To
design a path of an object and the way the object moves
along that path he must first create a sequence of orienta-
tions and displacements in the space. A usual process of an-
imation is to begin with the first frame and the last frame.
Graphic designer will create inbetween frames iteratively.
Based on movements along the path he may create inter-
mediate frames in an order which best suits his imagina-
tion. Now he provides these frames to an interpolator. At
this stage he is also required to provide an ordering of the
frames to the interpolator.

Results presented in this work provide a way to auto-
mate the process of ordering the frames created by a graphic
designer. In this work we present a sampling criterion, an
ordering algorithm and an interpolation scheme that recon-
structs the approximation to the original motion. We have
made an attempt to extend the computational geometric
curve reconstruction approach to curved spaces (Rieman-
nian Manifolds). Instances of applications of curve recon-
struction in curved spaces are sparsely present in literature,
see for example, edge grouping in [6], and DT-MRI tractog-
raphy in [5]. In [6], Voronoi diagram construction is used for
perceptual grouping of points on a curved surface.

The Riemannian manifold we are interested in, i.e. the
Euclidean motion SE(3),SE(2), are endowed with an addi-
tional structure of a group and there by give us Lie groups to
work on. SE(3) is a well studied object in physics and math-
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ematics. SE(2) is used to model the set of configurations of
an object under Euclidean motion and is explored in the do-
main of image processing for segmentation as well as in ob-
ject tracking where one is interested in a constrained evolu-
tion of a curve under the action of SE(2), [18]. SE(3) is used
extensively in robotics for path planning and motion plan-
ning of robots. It is also useful in computer vision and graph-
ics. No bi-invariant metric exist on SE(3). Together with the
Riemannian metric defined on it, the exponential map and
further a left invariant distance metric on SE(3) can be ex-
pressed in a closed form. We give examples of successfully
reconstructed curves in SE(2) and SE(3). We show an appli-
cation of curve reconstruction in SE(2) for ordering video
frames. We show that for densely sampled curves, minimal
spanning tree (MST) gives a correct polygonal reconstruc-
tion of curves in Riemannian manifolds. It can be shown that
the problem of curve reconstruction is equivalent to that of
traveling salesman problem. In [2], authors show that in the
context of curve reconstruction, the traveling sales man tour
can be constructed in polynomial time. Once ordered, we
interpolate the ordered point set by a partial geodesic inter-
polation scheme. To ensure smoothness at the sample points
we also propose to interpolate samples using de Casteljau al-
gorithm assuming that the boundary conditions are known.
It is possible to tackle a noisy sample both in combinatorial
and variational curve reconstruction approaches, see for ex-
ample [11] and [24]. In this article, we do not discuss issues
related to noisy sample.

2 Background

We begin with a quick review of curve reconstruction in the
plane, keeping the notations and definitions as general as
possible. A curve, for our purpose, is a set of image points of
a smooth function C : [0,1] → M. More specifically look-
ing at the application at hand, we restrict M to be a differen-
tiable manifold. A subclass of curves those are smooth and
simple is of vital importance in pattern recognition, graph-
ics, image processing and computer vision.

If M = R
2 then the problem is of reconstructing curves

in a plane and C is planar. R
2 along with the standard Eu-

clidean distance metric is a metric space. Naturally the ques-
tion arises: Is it always possible to have a finite sample set
S ⊂ C which captures all the details about C ? Answer to this
question lies in the fact that C is smooth and is a compact
one dimensional submanifold. To appreciate further let us
look at the definition of an ε-net. For given ε > 0, a subset
S of C is called an ε-net if S is finite and C ⊂ ⋃

s∈S Bε(s),
where Bε(s) is an open ball in M with radius ε. In other
words S is finite and its points are scattered through C in
such a way that each point of C is at a distance less than ε

from at least one point of S . Since C is compact every cover

will have a finite sub-cover, which shows a possibility of a
finite representative sample set of C . The concept of ε-net
captures the idea of sampling criterion very well.

In [11], based on the uniform sampling criterion an Eu-
clidean MST is suggested for the reconstruction. In the ini-
tial phase of the development, uniform sampling criterion
was the bottleneck. The first breakthrough came with the
non-uniform sampling criterion suggested based on the lo-
cal feature size by [4]. Unlike the uniform sampling it sam-
ples the curve more where the details are more. Non-uniform
sampling of a curve is based on the medial axis of that curve.
The medial axis of a curve C is closure of the set of points
in M which have two or more closest points in C . A simple
closed curve in a plane divides the plane into two disjoint re-
gions. Medial axis can be thought of as the union of disjoint
skeletons of the regions divided by the curve. The Local fea-
ture size, f (p), of a point p ∈ C is defined as the Euclidean
distance from p to the closest point on the medial axis.

C is ε-sampled by a set of sample points S if every p ∈ C
is within distance ε · f (p) of a sample s ∈ S . The algo-
rithm suggested in [4] works based on Voronoi construction
and its dual-Delaunay triangulation. All Delaunay based ap-
proaches can be put under a single formalism, namely the
restricted Delaunay complex, as shown in [10]. Every ap-
proach is similar in construction and differs only by how
it restricts the Delaunay complex. The CRUST [4] and fur-
ther improvements Nearest Neighbor-CRUST [8] can han-
dle smooth curves. In [8] small change in the algorithm
is done to take care of the reconstruction of curves in R

n,
n-dimensional Euclidean space, even with boundaries. The
CRUST and NN-CRUST assume that the sample S is de-
rived from a smooth curve C . The question of reconstructing
non smooth curves has also been studied. An extensive ex-
perimentation with various curve reconstruction algorithms
is carried out in [3]. In [9] an extension of NN-CRUST to R

d

is presented, which opens up possibilities of extending the
existing Delaunay based reconstruction algorithms to higher
dimensional Euclidean spaces. We will show an example of
a curve in SE(2) reconstructed by NN-CRUST.

2.1 Organization of the Article

In this article, we pose the problem of curve reconstruction
in higher dimensional curved spaces. We pose the prob-
lem as follows. Let M be a Riemannian manifold and
C : [0,1] → M be a smooth, closed and simple curve.
Given a finite sample S ⊂ C reconstruct C . Problem involves
defining the appropriate S , suggesting a provable algorithm
for geodesic polygonal approximation and an interpolation
scheme.

To deal with samples on curved spaces, we will first ex-
amine the notion of distance on surfaces and then we will
move on to define distances on more general manifolds in
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Sect. 3. We equip Riemannian manifold with a metric with
the help of a Riemannian inner product. Next we examine
the metric structure of SE(2) and SE(3). In Sect. 4 we show
with the help of an example that the medial axis based sam-
pling criterion becomes meaningless in curved spaces. Next
we define a dense sample set of a smooth curve on Rieman-
nian manifolds. In Sect. 5, we show that it is possible to
re-order a dense sample of a curve. We present successfully
reconstructed curves in SE(2) and SE(3) in Sect. 6. And fi-
nally we conclude in Sect. 7.

3 Metric Structure on Riemannian Manifolds

3.1 R
n and a Surface in R

3

A curve1 in space and a curve on surface are two differ-
ent entities. R

n can be thought of as a Riemannian man-
ifold with the usual vector inner product as the Rieman-
nian metric. The tangent space at a point of R

n is also an
n-dimensional vector space. With the help of the vector in-
ner product, the length of the curve x : [0,1] → R

n is de-
fined as: L(x) = ∫ 1

0

√〈x′(t), x′(t)〉dt . It turns out that the
minimum length curve between two points in the Euclidean
space is a straight line segment connecting them. So the
distance between two points in R

n is given by d(x, y) =√∑n
i=1(xi − yi)2. With this as a metric, (Rn, d) is a metric

space.
Now let us look at a two dimensional surface M em-

bedded in R
3. Two dimensions here indicate that each point

p ∈ M has a neighborhood homeomorphic2 to a subset of
R

2. In other words, if we associate with each point p ∈ M a
tangent space Tp M then the dimension of Tp M is two,3 i.e.
two linearly independent vectors are required to span Tp M.
It is now this tangent space and the basis vectors of this
space that decide the Riemannian metric for a given surface.
Let us consider a surface patch x(u, v) ⊂ R

3 parametrized
by (u, v) ∈ U ⊂ R

2. In this case x is our manifold M. Rie-
mannian metric is defined as:

gij =
[
E = 〈xu, xu〉 F = 〈xu, xv〉
F = 〈xv, xu〉 G = 〈xv, xv〉

]

(1)

where xu and xv are partial derivatives of x(u, v) w.r.t. u

and v respectively. Any vector in Tp M can be expressed in
terms of these basis vectors xu and xv . The inner product
for vectors x1, x2 ∈ Tp M is given by 〈x1, x2〉g = xT

1 gij x2,

1We restrict out attention to smooth curves, i.e. curves which are C∞.
2Homeomorphic here can be replaced by diffeomorphic for a differen-
tiable manifold.
3For notations and definitions of basic differential geometric terms, we
refer to [12].

Fig. 1 A bilinear surface and a geodesic

where x1 and x2 are column vectors. Given a curve γ (t) ∈
M, the length of curve γ is defined as:

L(γ ) =
∫ 1

0

√〈
γ ′(t), γ ′(t)

〉
g
dt (2)

Given p,q ∈ M, let γ be a curve lying in M with p,q

as its end points. Then

d(p,q) = infL(γ ) (3)

is a valid metric on M. A γ ∗ for which the distance between
two points is minimum is called a geodesic curve on the
manifold M. As we will see in the following example, even
for a simple looking parametrized surface finding a closed
form expression for the geodesic curve is difficult. In prac-
tice, γ ∗ is obtained by numerical approximations [14].

Example 1 Let x(u, v) = (u, v,u · v) which leads to xu =
(1,0, v), xv = (0,1, u) and E = 1 + v2, F = u · v and
G = 1 + u2. A curve in x(u, v) is, γ (t) = x(u(t), v(t)) =
(u(t), v(t), u(t) · v(t)). The length of the curve γ (t), t ∈
[t0, t1] is

∫ t1
t0

√
Eu′2 + 2 · F · u′ · v′ + Gv′2 dt , where u′ and

v′ are du/dt and dv/dt respectively.
If we try to minimize the length function by Euler-

Lagrange minimization we get for each of the co-ordinates
a second order ordinary non-linear differential equation to
solve. In this example these equations are:

d2u

dt2
+ 2

v

1 + u2 + v2

du

dt

dv

dt
= 0 (4)

d2v

dt2
+ 2

u

1 + u2 + v2

du

dt

dv

dt
= 0 (5)

Let the boundary points, the points between which we
are trying to find the geodesic distance, be (1,1,1) and
(−1,−1,1). We solve the BVP for the above system of
equations with MATLAB boundary value solver. The resul-
tant geodesic and the initial guess are shown in Fig. 1.
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Fig. 2 Comparision of a curve and a geodesic in SE(2) between two
configurations A1 and A2

3.2 Euclidean Motion Groups

Consider an object in plane undergoing a rigid body Eu-
clidean motion. This motion can be decomposed into a ro-
tation with respect to the center of mass of the object and
a translation of the center of mass of the object. All possi-
ble configurations of an object in plane can be represented
by (θ, u, v) (i.e. orientation of the principle axis and the
co-ordinates of the center of mass of the object), where
0 ≤ θ < 2π and (u, v) ∈ R

2. Let all such configurations
form a set S. It is rather straight forward to define a met-
ric on S so as to define nearness of two configurations of
an object. If A1 = (θ1, u1, v1) and A2 = (θ2, u2, v2) be two
configurations in S then it is easy to verify that

d(A1,A2)

:=
√

a(θ1 − θ2)2 + b(u1 − u2)2 + b(v1 − v2)2 (6)

is a valid metric on S corresponding to the Riemannian
inner product 〈A1,A1〉R = AT

1 RA1, and R = [ a 0
0 bI2

]
a

positive definite matrix. Moreover, for given A1 and A2,
left composition with A ∈ S, i.e. A(A1) = (θ + θ1, u +
u1, v + v1), the above defined metric leads to d(A1,A2) =
d(A(A1),A(A2)). Hence we have a left invariant metric de-
fined on S. Physical interpretation of the left invariance is,
the freedom in choice of inertial reference frame. A typical
curve between two configurations in SE(2) and the geodesic
segment from A1 to A2 are shown in Fig. 2.

Similarly, consider a rigid body moving in free space. We
fix an inertial reference frame {B} at the origin O and a
frame {E} to the body at some point O ′ of the body as shown
in Fig. 3. At each instance the configuration of the rigid body
is described via a transformation matrix, A ∈ SE(3), corre-
sponding to the displacement from frame {B} to frame {E}.

So a rigid body motion becomes a curve in SE(3), let
A(t) be such a curve given by A(t) : [−c, c] → SE(3),

Fig. 3 Inertial frame {B} and body fixed frames {E}

A(t) = [
R(t) d(t)

0 1

]
, where R ∈ SO(3), a rotation matrix, and

d ∈ R
3 is a displacement vector. The lie algebra element

S(t) ∈ se(3) can be identified with the tangent vector A′(t)
at any t by:

S(t) = A−1(t)A′(t) =
[ [ω](t) v(t)

0 0

]

(7)

where [ω] is a skew symmetric matrix [12] corresponding
to the vector ω = [ωx ωy ωz ] ∈ R

3. ω = [ωx,ωy,ωz] ∈ R
3.

The ‖ω‖, ‖ · ‖ represents the standard Euclidean norm,
gives the amount of rotation with respect to the unit vec-
tor along ω. The exponential map exp, is a diffeomorphism
[25] connecting Lie algebra to corresponding Lie group. The
exp : se(3) → SE(3) is given by the usual matrix exponential
as exp(S) = ∑∞

n=0
Sn

n! . The ω physically corresponds to the
angular velocity of the body, while v is the linear velocity of
the origin O ′.

Let us assign a Riemannian metric g = [ αI3 0
0 βI3

]
over

SE(3) as prescribed in [20]. And so for V = (ω, v) ∈ se(3),
〈V,V 〉g = αωT ω + βvT v. It is proved in [25] that the ana-
lytic expression for the geodesic between two configurations
A1 and A2 in SE(3), with g as Riemannian metric, is given
by

R(t) = R1 exp
([ω0]t

)
(8)

d(t) = (d2 − d1)t + d1 (9)

where [ω0] = log(RT
1 R2) and t ∈ [0,1]. The path is unique

for Trace(RT
1 R2) 
= −1. And the distance between two con-

figuration in SE(3) is given by

d(A1,A2) =
√

α
∥
∥log

(
R−1

1 R2
)∥
∥2 + β‖d2 − d1‖2. (10)

All the formulas required for computing exp and log maps
are given in the Appendix for completeness.

Example 2 Consider two configurations A1 and A2, as
shown in Fig. 4, given by vectors (ω1, v1) and (ω2, v2)

respectively, where ω1 = π
4 [1 0 0 ], v1 = [−6 0 0 ], ω2 =

π
2 [1 1 0 ] and v2 = [0 6 2 ].

Once a particular Riemannian metric is identified, we
can construct a distance metric on the manifold. With the
distance metric d(·, ·) (corresponding to the length of a
geodesic path) defined on Riemannian manifold, we are now
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ready to discuss about the medial axis and the sampling cri-
terion for a curve on the given manifold.

4 Medial Axis, Dense Sample

We proceed by revisiting the definition of medial axis stated
previously. Let M be a Riemannian manifold and d(·, ·) :
M × M → R be the corresponding distance metric.

Definition 1 The medial axis M of a curve C ⊂ M, is the
closure of set of points in M that have at least two closest
points in C .

Figure 5 shows examples of medial axis of closed curves
on a half cylinder and in a plane. It should be noted here
that the medial axis, as defined above, is a subset of the
underlying manifold in which the curve lies. A curve em-
bedded in a general Riemannian manifold and embedded in

Fig. 4 A geodesic between A1,A2 ∈ SE(3)

R
3 will have different medial axes. The open disc (ball) of

radius ε > 0 in M with s ∈ M as a center is defined as
Sε(s) = {x ∈ M|d(s, x) < ε}. In the same manner Bε(s) =
{x ∈ M|d(s, x) ≤ ε} is a closed disc (ball) in M with radius
ε and the center s. The set ∂Bε(s) = {x ∈ M|d(x, s) = ε} is
the boundary of Bε(s).

Definition 2 At a point p on curve C the local feature size
f (p) = d(p,M). Where d(p,M) = inf{d(p,m),∀m ∈ M}
and M is the medial axis of C .

The local feature size at a point on a curve captures the be-
havior of that curve in the neighborhood of given point. In
practice for arbitrary curves it is difficult to identify the me-
dial axis. Looking at the construction of the Voronoi diagram
[19], for a given sample points of a curve the Voronoi ver-
tices do capture the behavior of the medial axis of the sam-
pled curve. And so for a densely sampled curve the Voronoi
vertices for these samples are taken to be the approximate
of the medial axis of the given curve. It is computation-
ally challenging to construct Voronoi diagrams on curved
spaces [15].

4.1 Dense Sampling

A tubular neighborhood for a curve in a plane is defined as
the subset of the plane such that every point of the subset
belongs to exactly one line segment totally contained in the
subset and normal to the curve. A disk centered at a point
of a curve contained in a tubular neighborhood of that curve
is called a tubular disk. Let us generalize this definition to
curves in manifolds. We will also define the notion of a
dense sample of a curve in manifold based on its tubular
neighborhood.

Fig. 5 Medial axis of a curve
on a surface and a curve in a
plane
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Definition 3 Let C ⊂ M be a smooth curve. Consider seg-
ments of geodesics that are normal to C and start in C . If
C is compact, then there exists an ε > 0 such that no two
segments of length ε and starting at different points of C in-
tersect [23]. The union of all such segments of length ε is an
open neighborhood T of C , and is called a tubular neighbor-
hood of C .

We denote the open segment with center p ∈ C and ra-
dius ε in the normal geodesic segment of C at p by Nε(p).
Revisiting the definition of the tubular neighborhood: the
union Nε(C) = ⋃

p∈C Nε(p) is called a tubular neighbor-
hood of radius ε if it is open as a subset of M and the map
F : C × (−ε, ε) → Nε(C) is a diffeomorphism. This inter-
pretation is the outcome of result from [7]. Let C ⊂ R

2, be a
simple closed smooth curve. Existence of the tubular neigh-
borhood is evident from the compactness of the curve in R

2.
We show something more about the value of ε in the next
proposition.

Proposition 1 If Nε(C) is a tubular neighborhood of C then
ε < 1

k
. Where k = maxk(p),p ∈ C and k(p) is the curvature

of the curve at point p.

Proof Let us define a curve α(s) in R
2 by

α(s) = F
(

C(s), t
) = C(s) + tN

(
C(s)

)
,

for a fixed t ∈ (−ε, ε) such that at t = 0, α(0) = p. N(p) is
the unit normal to the curve C at p. This new curve belongs
to the open set Nε(C) and

α(0) = p + tN(p) (11)

α′(0) = C′(0) + tN ′(0) (12)

α′(0) = (
1 − tk(p)

)
C′(0) = (dF )(p,t)

(
C′(0)

)
. (13)

Since F : C × (−ε, ε) → R
2 is a diffeomorphism when re-

stricted to C × (−ε, ε), we have that (dF )(p,t)(C′(0)) is a
non-null vector, i.e. 1 − tk(p) 
= 0. Since (−ε, ε) is con-
nected and 1 − tk(p) > 0 for t = 0, so 1 − tk(p) > 0 on
C × (−ε, ε). Now if k = maxk(p),p ∈ C then 1 − tk > 0.
And we have ε = t < 1

k
. �

Definition 4 A finite sample set S ⊂ C is called a uniform
ε-sample for some ε > 0 if for any two consecutive sample
points r, s ∈ S , r ∈ Bε(s).

Definition 5 A uniform ε-sample S of a curve C ⊂ M is
dense if there is a real number ε > 0 such that

⋃
s∈S Bε(s)

forms a tubular neighborhood of C.

Proposition 2 For plane curves if ε < minp∈C f (p) then
the uniform ε-sample S of curve C is a dense sample.

Fig. 6 (a) A curve C ∈ R
3 and the part of medial axis near p ∈ C. ε1

is the distance of the point p ∈ C from the medial axis of the curve
in space. (b) The same curve C on a surface M and the medial axis
distance ε2 from the point p ∈ C to the medial axis of the curve on the
surface

Proof By the definition of f (p), p ∈ C , for a smooth curve
C , the f (·) attains maximum value at the points where the
curvature of C is maximum. For the ε < minp∈C f (p), let
the uniform ε-sample be S ⊂ C . From Proposition 1, we see
that ∀s ∈ S,

⋃
s∈S Bε(s) covers the curve C and is a tubular

neighborhood of C . So, S is dense. �

Before we proceed to the main theorem we will discuss
a few observations in next section. We show by an example
how the medial axis based sampling fails due to the curva-
ture of the underlying Riemannian manifold. We also pro-
pose to work within the injectivity radius of manifold to
avoid such a problem. Observations presented in next sec-
tion suggest that the additional knowledge of the manifold
on which the curve is lying allows for a sparser sampling
densities. A counter example to the medial axis based sam-
pling presented in the next section will help us in identifying
a conservative sampling criterion for curves.

4.2 Observations and a Counter Example

We know that to form a dense sample of a curve in R
n it is

required to sample with the ε1 < minp∈C f (p). A curve and
the corresponding ε1 is shown in Fig. 6(a). Whereas if the
same curve is embedded in a surface, as shown Fig. 6(b),
the required ε2 will depend upon the nature of the surface.
It turns out that ε2 > ε1. Let us look at another example.
A circle in the xy-plane in R

3 can be thought of as some
latitude on a sphere of radius r ≥ L

2π
, where L is the length

of the circle. In both the cases, circle on a plane and circle
on a sphere, the sampling required for correct reconstruc-
tion is different. On sphere we need less dense sample set
as compared to the plane. In fact as we increase the radius
r we need denser and denser sample set for correct recon-
struction and its limiting case, r → ∞, is the plane. In R

3

the usual Euclidean metric is carried over to the points of
the circle. In case of sphere the shortest path between two
points is always along the great circle passing through these
two points. And the length of the segment which is shorter is
the distance between two points on sphere. With this metric
defined, sphere becomes a metric space. And the points of
the circle on sphere are endowed with this metric. The points
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Fig. 7 (a) Circle with radius R is lying in space. (b) Circle resting on
a sphere of radius r = R

sin θ
. (c) Circle is the great circle the sphere of

radius R

Fig. 8 A circle C and the normal geodesic from a point (1,0,1.0629)

to M

of this circle on a sphere are more structured then the points
of the same circle in R

3. The additional knowledge of the
underlying surface adds up to the ordering relation between
points of the circle. Since we know the surface we know
the tangent space and that reduces the effort in ordering the
sample points.

Interestingly, when generalized to the curves on mani-
folds, the sampling criterion based only on the medial axis
becomes meaningless. As an example let us look at a circle
of radius one on the surface shown in Fig. 8. The medial axis
of the circle on the given surface is the point M(0,0), where
the surface M is parametrized as M(u,v) = 7.85e−2(u2+v2).
For any point on the circle, the distance from the medial axis
turns out to be larger than the length of the circle itself. Con-
sider the limiting case of this surface, a cylinder, suppose the
circle is on the cylinder. The medial axis point does not exist.

The above phenomenon can be understood clearly if we
look at the cut locus of the point p ∈ M. Following can be
considered as the defining property of the cut locus of a point
on the manifold. If γ (t0) is the cut point of p = γ (0) along
the geodesic arc γ then either γ (t0) is the first conjugate
point of γ (t0) or there exists a geodesic σ = γ from p to
γ (t0) such that l(σ ) = l(γ ) (lengths of σ and γ are equal).

For example if M is a sphere S2 and p ∈ S2 then the
cut locus of p is its antipodal point. And if we consider the
sphere of radius R the distance of point p from its cut locus
is πR. Whereas the distance of the points pi on the circle in
Fig. 7(c) to the medial axis M is πR

2 . Now coming back to
the counter example in Fig. 8 we observe that the distance of
the point p to its cut locus d(p,Cm(p)), where Cm(p) is the
cut locus of p ∈ M, is less then the distance to the medial
axis M of the circle. It can be shown that if q ∈ M −Cm(p)

there exists a unique minimizing geodesic joining p and q .
In [7]

i(M) = inf
p∈M

d
(
p,Cm(p)

)
(14)

is defined as the injectivity radius of M. So if ε < i(M)

then expp is injective on the open ball Sε(p).
Tubular neighborhood of a curve is constructed by tak-

ing only the normal geodesics to the curve at a point and
assuring the injectivity of the expp map along these normal
directions. Now, we propose to work inside the injectivity
radius to resolve the problem with sampling.

Proposition 3 Let C ∈ M be a smooth, simple and closed
curve. If S is a uniform ε-sample of C then S is dense for
ε < min{infp∈C f (p), i(M)}.

Proof Let S be a uniform ε-sample of C with ε <

min{infp∈C f (p), i(M)}. From the definitions of the injec-
tivity radius and the feature size we know that for the above
mentioned ε, expp is injective on Sε(p). So,

⋃
s∈S Bε(s)

forms a tubular neighborhood of C . And hence S is dense. �

4.3 Behavior of a Curve Segment Inside a Tubular
Neighborhood

If the underlying manifold is a plane and the sample of
a curve is dense enough then based on the tubular neigh-
borhood it is shown in [11] that Euclidean minimal span-
ning tree reconstructs the sampled arc. The crucial argument
for the correctness of above is the denseness of the sam-
ple. The argument rests on the observation that an arc does
not wander too much inside a tubular disk. This behavior of
the curve segment avoids the connections between the non-
consecutive sample points in S , defined as short chords.

Next we give an alternate proof of flatness of the curve
segment inside a tubular neighborhood in plane, then go on
to extend the proof to curves in the Riemannian manifold.
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Fig. 9 (a) The arc touches Bpq/2(c). (b) The arc touches Bpq/2(c) at
p and intersects its boundary at q ′ while passing through q . (c) The arc
intersects boundary of Bpq/2(c) at p′ and q ′ while passing through p

and q respectively

Theorem 1 Let p and q be two points on an arc C ⊂ R
2

such that q is inside the tubular disk Bε(p) centered at p.
Then the sub arc pq of C is completely inside Bpq/2(c),
where c is the center of diameter pq .

Proof Since q ∈ Bε(p), pq = d(p,q) ≤ ε. Now pq being a
segment of an arc C there are three possible ways, as shown
in Fig. 9, in which it can intersect with Bpq/2(c).

For the possibility shown in Fig. 9(a), it is evident that
center c lies on two normals passing through p and q , i.e.
c ∈ pq , since Bpq/2(c) and C share common tangents at p

and q . This can not happen since Bpq/2(c) ⊂ Bε(p), a subset
of a tubular neighborhood.

Let us consider the case in Fig. 9(b), arc C touches
Bpq/2(c) at p and intersects the boundary of Bpq/2(c) at
q and q ′. We can find out a point q ′′ on the segment qq ′
which is nearest to c. At q ′′ the circle with center c and ra-
dius d(c, q ′′) shares a common tangent with C . Hence c lies
on the two normals pc and q ′′c. This can not happen inside
a tubular neighborhood.

Finally we consider Fig. 9(c). On segments pp′ and qq ′
we find p′′ and q ′′ nearest to c. In this case c lies on p′′c
and q ′′c. Since c is inside tubular neighborhood this can not
happen.

So the only possibility we are left with is that the segment
pq of curve C lies entirely inside Bpq/2(c). �

Theorem 2 Let p and q be two points on an arc C ⊂ M,
where M is any Riemannian manifold, such that q is inside
the tubular disk Bε(p) centered at p. Then the sub arc pq

of C is completely inside Bpq/2(c), where c is the center of
diameter pq .

Fig. 10 Tangent space of a point p ∈ M where ‖v‖ < ε and the cor-
responding geodesic N

Proof For M := R
n we know that cp, since p ∈ Sn−1, is

orthogonal to TpSn−1. Sn−1 is a unit sphere in R
n.

Since we are working inside a tubular neighborhood of
the curve C , with ε as prescribed in Proposition 3, exp :
Tp M → M is a diffeomorphism. Gauss’s lemma [7] asserts
that the image of a sphere of sufficiently small radius (< ε)
in Tp M under the exponential map is perpendicular to all
the geodesics originating at p, see Fig. 10.

The rest of the proof follows from the arguments stated
in the proof of Theorem 1. �

5 Curve Reconstruction on a Riemannian Manifold

5.1 Ordering

We model a curve with a graph where the vertices of the
graph are the sample points and the edges indicate the or-
der in which the vertices are connected. This also implies
a geometric realization of the graph. If further we put the
distance between two sample points as the edge cost, it be-
comes a weighted graph. A minimal spanning tree for a
weighted graph is a spanning tree for which the sum of edge
weights is minimal. To keep the notations consistent we de-
fine the geodesic polygonal path on Riemannian manifold
as the path along which every vertex (sample point) pair is
connected by a geodesic segment.

Computing the minimal spanning tree (MST) uses the
following fundamental property, let X ∪ Y be a partition of
the set of vertices of a connected weighted graph G. Then
any shortest edge in G connecting a vertex of X and a vertex
of Y is an edge of a minimal spanning tree. If we use MST to
model an arc, we must ensure that there are no short chords
in the graph, as proved in [11].

Our work focuses on closed, simple, smooth curves. The
sample points will exactly two neighbors (samples) on the
curve, thereby giving an MST in which every vertex has de-
gree 2.

Theorem 3 If S is a dense sample of C ⊂ M then MST
gives a correct geodesic polygonal reconstruction of S ,
where C is a smooth, closed and simple curve.
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Proof We show that the geodesic polygonal path has no
short chords. The argument is similar to the proof provided
for planar case in [11]. For the completeness of the article
we restate the argument here. Suppose that MST does not
give a correct geodesic polygonal reconstruction of S . It im-
plies that there are at least two points in MST which are
not consecutive. Let these points be p,q ∈ S . Since pq is
a short chord there has to be at least one edge in the sub
arc pq which has length greater than that of pq . But since
the sample S is dense, the arc pq must be contained in the
disc with diameter pq . Inside the disc there is no arc with
length greater than the length of the diameter. So we have a
contradiction. �

5.2 Interpolation

Once we have ordered the given set of points of the curve on
a curved manifold the next step is to interpolate this point
set to the desirable granularity. The easiest way to interpo-
late the points is to connect the points via straight line seg-
ments, a linear interpolation. In general for a manifold like
SE(3), the geodesics are the exp segments. But this scheme
will not produce a differentiable curve which might be nec-
essary for some applications. Based on the need and applica-
tion one may chose an appropriate interpolation scheme. In
[22] and [13] a quaternion based approach is suggested and
is very useful in computer graphics and animation. Since we
have represented SE(3) using matrices we would rather stick
to matrices. Motivated by motion planning purposes vari-
ous interpolation schemes based on variational minimiza-
tion techniques have been proposed and some of them turn
out to be quite simple for implementations. For a broad
overview one will find [21] and [16] useful. As the final
stage in the reconstruction we have used de Casteljau in-
terpolation scheme as prescribed in [1], i.e. generalizing the
multilinear interpolation on SE(3), a piecewise C2 curve
connecting two frames with given velocities. The advantage
is that the expression is in the closed form with exponen-
tial and log maps. Suppose that we do not know the veloc-
ities at the node points. For such cases we have used a par-
tial geodesic scheme to interpolate between two elements
of SE(3). Wherein, the rotational part is interpolated by the
exp map and the translational component is interpolated by
spline segments. With the help of an example, a compar-
ison between both the interpolation schemes is shown in
Fig. 11. A descriptive summary of the curve reconstruction
algorithm is given next.

5.3 Summary of Algorithm

We begin with a set S := {s0, s1, . . . , sn−1} of sample points
of the curve C ⊂ M. We assume that S is a dense sam-
ple. Using the Riemannian metric defined on M we cal-
culate distances, d(si, sj ), i 
= j , between sample points

Fig. 11 Comparision of exponential map and C2 smooth in-
terpolation in SE(3) between g0 = [0,0,0] � [−5,0,0] and
g1 = [π/2,0,0] � [5,0,0], with tangents v1

0 = [0,0,0,3,1,1] and
v1

2 = [π/2,0,0,−1,−3,−1]

for i, j = 1,2, . . . , n − 1. Using the minimum spanning
tree algorithm we reorder the set of sample points. Sσ =
{sσ(0), sσ (1), . . . , sσ (n−1)} is the reordered set where σ is a
permutation on the set of n symbols. We interpolate Sσ us-
ing the de Casteljau interpolation scheme and produce a C2

continuous curve.

6 Simulations

6.1 Curves on a Sphere

We start with examples of curves on a unit sphere. We show
two curves with different densities required by the MST for
correct reordering of the samples in Fig. 12.

The curves after reordering the sample points are shown
in Figs. 12(a) and 12(b).

6.2 Curves in SE(3)

In Fig. 13 an unordered set of frames in SE(3) are shown.
We assume that the sample shown is dense.

By the distance metric defined in (10) we compute dis-
tances between all the frames. We then compute the MST
for the complete weighted graph of frames with the com-
puted distances as the edge weights.

Once the ordering is done we interpolate the sample with
partial geodesic scheme. Results of interpolation with two
different granularities is presented in Figs. 14 and 15.

6.3 Another Useful Manifold : SE(2) with Scaling

Suppose for a planar object in motion, we include scaling
with respect to the center of mass along with rotation and
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Fig. 12 Example curves on a unit sphere

translation. The resultant element will be of the following
form

A =
[
eλR d

0 1

]

∈ R
3. (15)

This element operates on the point of the object in plane. It
scales (eλ) and rotates (R) the object with respect to its cen-
ter of mass and then translates (d) the center of mass. With
each such element we can associate a vector [λ, θ, dx, dy].
The elements of the form given by (15) with standard ma-
trix multiplication forms a lie group. We can extend the no-
tions of tangent space and exponential map to this lie group.
As discussed previously in Sect. 3.2 this group is a semi-
direct product of elements of scaled rotations and transla-

Fig. 13 A sample S of a curve C ⊂ SE(3)

Fig. 14 Reconstructed curve in SE(3)

tions. The tangent space elements at identity, lie algebra el-
ements, for scaled rotations are given by

[a] = λ

[
1 0
0 1

]

+ θ

[
0 −1
1 0

]

. (16)

And the usual matrix exponentiation gives

exp [a] = eλ

[
cos θ − sin θ

sin θ cos θ

]

. (17)

We can construct a left-invariant Riemannian metric on
this group. It can be shown that for two elements A1,A2 in
this group

d(A1,A2)

=
√

α
(
(λ1 − λ2)2 + (θ1 − θ2)2

) + β‖d1 − d2‖ (18)

is a valid distance metric. In Fig. 16, a circular object under
the action of this group is shown for various time steps. As-
suming the curve is sampled densely, along with the distance
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measured by (18) we reconstruct the curve using MST. The
successfully reconstructed curve, with the values α = 10 and
β = 1, is shown in Fig. 17. Important fact to note here is that
the curve presented here is not a closed curve. The algorithm
is modified in this case to take care of the end points. In fact
a simple nearest neighbour search will also do the job of re-
construction once we give in the initial point. The values of
α and β depends upon the linear and rotational velocities.

Fig. 15 Reconstructed curve in SE(3) with finer interpolation

Whichever velocity is varying slowly higher weight should
be given to that component of the metric.

6.4 Application to Video Frame Sequencing

As an application of the curve reconstruction we take up a
task of ordering the frames {Fi}i=1,...,N of a video sequence.
In Fig. 18 there are sixteen frames of a video sequence. We
use the rigid Euclidean motion of an object in the frames
as a clue for re-ordering the frames. Let us assume that the
object under observation is masked by a rectangle and it is
segmented out of the frames. We also assume that the mo-
tion of the object is the rigid body Euclidean motion in R

2.
Further let the video frames from the sequence form a dense
sample set of the motion curve. As discussed in Sect. 3.2
we calculate the distances between frames as the distance
between elements of SE(2). Although we do not focus on
how to estimate the rotations we give a very primitive look-
ing argument below to estimate the distances between two
frames. And it turns out that the estimates are good enough
in this case to reconstruct the curve. But in general we use
the [θ, x, y] as the element of SE(2) and we assume that
we have an oracle to give these frame coordinates to the al-
gorithm. We have done experiments with template match-
ing based registration algorithm as suggested in [17]. It is
used extensively in the domain of computer vision and im-
age processing. It estimates the Euclidean transformations

Fig. 16 Various instances of a
curve in SE(2) with scaling
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Fig. 17 Instances of the
reconstructed curve in SE(2)

with scaling

Fig. 18 Unordered video frames

quite well. We have used it for computing rotations in R
3

for the previous example of a curve in SE(3).
The Euclidean distances between the mean locations of

the rectangles found out from the relative positions of the
rectangle is the first part of the distance metric. Next we
estimate the rotation angle of the object with respect to a
fixed inertial frame. For this purpose first we register the ob-
jects with their means, see Fig. 19. An observation reveals
that if we overlap the registered rectangles the area of the
overlapping region provides a good estimate of the rotation

Fig. 19 Mean cancellation and rotation estimation

angle. In fact for θ > arctan( b
a
), the overlapped area is a2

sin θ
,

where a is the shorter side of the rectangle. This clearly indi-
cates that as θ increase the overlapping area decreases upto
θ = π/2. For calculating the area we count the number of
lattice points (pixels) inside the overlapping regions. Finally
with the estimate for θ combined with the Euclidean dis-
tance between means give the d(F1,F2). Using sequential
search with known initial frame we are able to re-order the
frames as shown in Fig. 20. Even if we do not know the
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Fig. 20 Ordered video frames

initial frame, MST computes the correct connections of the
frames and gives a correct ordering upto end points.

Let us reconsider the distance metric on SE(2) given by
(6). If we scale the three axis properly the problem of curve
reconstruction in SE(2) reduces to the problem of curve re-
construction in R

3 and we may use all the non-uniform sam-
pling schemes and Voronoi diagram based reconstruction al-
gorithms. As an example we have used NN-CRUST to re-
construct the curve above in the motion sequence and we
get the correct ordering as expected.

7 Conclusion

We proved that the MST gives the correct geodesic polygo-
nal approximation to the smooth, closed and simple curves
in Riemannian manifolds if the sample is dense enough and
we work inside the injectivity radius. We have worked out
a conservative bound on the uniform sampling of the curve.
The effect of local topological behavior of the underlying
manifold was clearly identified and resolved by working in-
side the injectivity radius. In general the scheme works for
the smooth arcs with endpoints also. We have presented sim-
ulations for successfully reconstructed curves in SE(2) and
SE(3). We have also shown the applications of the combi-
natorial curve reconstruction for ordering motion frames in
graphics and robotics.

If we work inside the injectivity radius of the underlying
manifold we have taken care of topological changes but to
take care of geometric changes we need to work inside the
convexity radius as prescribed in [15]. We believe that the
results of non uniform sampling for curves in R

n are trans-
ferable to the curves in Riemannian manifold with careful
modifications. As an extension to this work we would like to
work out necessary proofs and carry out simulations to sup-
port our belief. The effect of noise on the sampling density

and the reconstruction algorithm, in case of curved spaces,
will be a challenging question. In future, we wish to work
on the problem of curve reconstruction from noisy sample
on curved spaces.
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Appendix: Exponential and Logarithmic Maps

A1 Given [ω] ∈ so(3),

exp[ω] = I + sin‖ω‖
‖ω‖ · [ω] + 1 − cos‖ω‖

‖ω‖2
· [ω]2 (19)

A2 Let (ω, v) ∈ se(3). Then

exp

[ [ω] v

0 0

]

=
[

exp[ω] Av

0 1

]

(20)

where

A = I + 1 − cos‖ω‖
‖ω‖2

· [ω] + ‖ω‖ − sin‖ω‖
‖ω‖3

· [ω]2

A3 Given θ ∈ SO(3) such that Tr(θ) 
= −1. Then

log(θ) = φ

2 sinφ

(
θ − θT

)
(21)

where φ satisfies 1 + 2 cosφ = Tr(θ), |φ| < π . Further
more, ‖ log θ‖2 = φ2.

A4 Suppose θ ∈ SO(3) such that Tr(θ) 
= −1, and let b ∈
R

3. Then

log

[
θ b

0 1

]

=
[ [ω] A−1b

0 0

]

(22)

where [ω] = log θ , and

A−1 = I − 1

2
· [ω] + 2 sin‖ω‖ − ‖ω‖(1 + cos‖ω‖)

2‖ω‖2 sin‖ω‖ · [ω]2

A5 Let θ1, θ2 ∈ SO(3). Then the distance L = d(θ1, θ2) in-
duced by the standard bi-invariant metric on SO(3) is

d(θ1, θ2) = ∥
∥log

(
θ−1

1 θ2
)∥
∥ (23)

where ‖ · ‖ denotes the standard Euclidean norm.

A6 Let X1 = (θ1, b1) and X2 = (θ2, b2) be two points in
SE(3). Then the distance L = d(X1,X2) induced by the
scale dependent left-invariant metric on SE(3) is

d(X1,X2) =
√

c
∥
∥log

(
θ−1

1 θ2
)∥
∥2 + d‖b2 − b1‖2 (24)

where ‖ · ‖ denotes the Euclidean norm.

http://www-roc.inria.fr/gamma/gamma/disclaimer.php
http://www-roc.inria.fr/gamma/gamma/disclaimer.php
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