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Abstract A new and simple colorimetric receptor 1, based

on the combination of 2-amino-4-methylphenol moiety and

julolidine moiety, has been designed and synthesized. 1

showed a selective colorimetric sensing ability toward F-

ion by changing color from yellow to orange, and could be

utilized to monitor F- without any inhibition by competi-

tive anions such as CH3COO- and CN-. Based on Job

plot, ESI-mass spectrometry and the 1H NMR titration, the

binding mode of 1 for F- was proposed to be 1:1. More-

over, the sensing mechanism for F- was theoretically

supported by DFT and TD-DFT calculations.
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Introduction

Recognition and detection of various anions have been

consistently paid much attention, due to their important

roles in chemical sciences, biological, medical and envi-

ronmental [1–3]. Among the various anions, especially,

fluoride is most concerned, because it is very useful in a

wide range of biological, medical, chemical processes, and

etc. [4–7]. Also, intake of suitable amount of fluoride can

prevent dental disease and osteoporosis [8]. Despite the

advantages of fluoride, however, chronic intake of fluoride

can cause accumulation in our body [9]. Such hyper-

ingestion of fluoride can bring many problems due to its

toxicity, such as gastric and kidney disorders, dental and

skeletal fluorosis, urolithiasis, or even death [10–15]. These

various effects of fluoride drove many scientists to develop

chemosensors for fluoride recognition in the specific con-

centration range [16–18]. Nevertheless, many chemosen-

sors are still unable to distinguish fluoride effectively from

anions such as CH3COO- and CN- because they have

similar basicity to F- and easily form hydrogen bonds [19].
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Therefore, it is still an important challenge to develop a

chemosensor for highly selective detection of fluoride.

Several methods, such as inductively coupled-plasma

atomic emission spectrometry [20], atomic absorption

spectroscopy [21], electrochemical methods [22] and so on,

have been developed to detect anions. Among the methods,

the most attractive one may be colorimetric sensors, which

can detect targets via naked-eye of the color change. In

addition, colorimetric materials have advantages such as

low cost, rapid response rate, easy detection, no require-

ment of a specific equipment and high selectivity [23–29].

Schiff bases have been utilized to develop novel

chemosensors with selectivity and sensitivity toward

anions. In particular, Schiff bases containing phenolic

groups are known as one of strategies of designing sensor

for anions because of the ability of the phenolic-OH group

to interact with anions through hydrogen bonding [30, 31].

In addition, the julolidine moiety is one of the well-known

chromophores [32, 33]. Moreover, we expected that the

combination of the methylphenol moiety having the elec-

tron-donor methyl group and the julolidine moiety may

show interesting electronic and sensing properties toward

anions.

Herein, we report a highly selective chemosensor 1 for

F-, which was synthesized in one step by the condensation

reaction of 2-amino-4-methylphenol with 8-hydroxyjulo-

lidine-9-carboxaldehyde (Scheme 1). Chemosensor 1 can

selectively detect F- by color change from yellow to

orange via the ‘naked-eye’. Also, it was able to distinguish

F- from competitive anions such as CH3COO- and CN-.

Moreover, a deprotonation mechanism for sensing of F-

was proposed, which was supported by the DFT/TD-DFT

calculation method.

Results and discussion

The colorimetric chemosensor 1 for fluoride was synthe-

sized by condensing 2-amino-4-methylphenol with 8-hy-

droxyjulolidine-9-carboxaldehyde (Scheme 1) and

characterized by 1H NMR and 13C NMR, ESI-mass spec-

trometry, and elemental analysis. The binding abilities of 1

were investigated by UV–vis, 1H NMR spectroscopy and

the DFT/TD-DFT studies.

UV–vis study of 1-F2

The sensing abilities of 1 were observed by ‘‘naked-eye’’

and confirmed by UV–vis spectroscopy. The absorption

response of 1 toward the tetraethylammonium (TEA) salts

(F-,CN-, Cl-, Br-, I-) or tetrabuthylammonium (TBA)

salts (AcO- H2PO4
-, BzO-, N3

-, SCN-) was carried out

in a mixture of bis–tris buffer/DMSO (3:97, v/v, 10 mM

bis–tris, pH 7.0) (Fig. 1a). Upon the addition of each anion

to 1, only F- induced a clear spectral change while other

anions showed either no or a little change in the absorption

spectra relative to the spectra of 1. In addition, only F-

showed a color change from yellow to orange by the

‘naked-eye’ (Fig. 1b). By contrast, other anions did not

cause any color change of solution. This observation sug-

gested that the receptor 1 can serve as a potential candidate

of a ‘‘naked-eye’’ chemosensor for F-.

The binding properties of 1 with F- were studied by

UV–vis titration experiments (Fig. 2). Upon the gradual

addition of F- into a solution of 1, a new band at 500 nm

appeared and the absorption band at 403 nm gradually

decreased, resulting in a color change from yellow to

orange. Simultaneously, two clear isosbestic points were

observed at 358 and 442 nm, indicating the formation of

the only one species between 1 and F-. This bathochromic

shift indicates that the proton of phenol in 4-methylphenol

might be deprotonated by F-, which leads to the formation

of phenolate. The phenolate donates the electron density

into the p-system, thus resulting in formation of extended

p-conjugated system [34, 35]. On the other hand, the

increase of an amount of the bis–tris buffer rendered 1 lose

the sensing property toward F-. This might be due to the

inhibition of deprotonation of 1 by water.

The binding mode between 1 and F- was identified to be

a 1:1 stoichiometry through Job plot analysis (Fig. 3),

which was also confirmed by ESI-mass spectrometry

analysis (Fig. 4). The positive ion mass spectrum of ESI-

mass showed that a peak at m/z = 581.20 was assignable

to [1-H??2TEA]? [calcd, m/z: 581.48], which supports

the deprotonation mechanism of 1 by fluoride. From the

UV–vis titration data, the association constant for 1 with

F- was determined as 6.15 9 102 M-1 on the basis of

Benesi-Hildebrand equation (Fig. S1) [36]. The detection

limit (3r/k) of receptor 1 for the analysis of F- ions was

calculated to be 31.4 lM (Fig. S2) [37].

An important feature to develop a practical sensor is its

high selectivity toward other competitive species. To

confirm the properties of 1 as the practical sensor, the

selectivity of 1 was studied in the presence of various

competing anions. The receptor 1 was treated with 240

equiv of F- in the presence of 240 equiv of other anions

(Fig. 5). There was no interference for the detection of F-

toward other anions. This observation suggested that 1

could be an excellent sensor for detecting F- in the pres-

ence of all the competing anions.

1H NMR study of 1-F2

1H NMR titration experiments were performed to under-

stand the interaction between 1 and fluoride at room tem-

perature (Fig. 6). In absence of fluoride, the hydroxyl
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proton (H10) of the julolidine moiety was not observed

maybe due to hydrogen bonding, while the hydroxyl proton

(H11) of methylphenol moiety appeared as a singlet at

14.37 ppm, and the aromatic protons (H1, H2, H4, and H6)

were resonated in the range of 7.09–6.79 ppm. Upon

addition of F- (1 equiv), the H11 at 14.37 ppm disappeared

immediately. The further addition of F- (1–10 equiv)

rendered all aromatic protons to shift upfield. In contrast,

H5 moved to down-field, suggesting that the electron

density of the imine moiety decreased due to the hydrogen

Scheme 1 Synthetic procedure of 1

Fig. 1 a Absorption spectral change of 1 (10 lM) in the presence of

240 equiv of various anions in a mixture of DMSO/bis–tris buffer

(97:3, v/v, 10 mM bis–tris, pH 7.0). b Color change of receptor 1
(10 lM) in the presence of 240 equiv of various anions in a mixture

of DMSO/bis–tris buffer (97:3, v/v, 10 mM bis–tris, pH 7.0)

Fig. 2 UV–vis spectral changes of 1 (10 lM) upon addition of F-

(up to 270 equiv)

Fig. 3 Job plot of receptor 1 and F-. The total concentration of F-

ions with receptor 1 was 3.0 9 10-5 M

Fig. 4 Positive-ion electrospray ionization mass spectrum of 1
(10 lM) upon addition of F- (1 equiv)
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bonding between N atom and -OH group. Then, a new peak

at 16 ppm appeared, indicating the formation of [FHF-]

species [38]. These results indicates that the negative

charge originated from deprotonation of 1 by F- might be

delocalized through the receptor molecule [39]. Therefore,

the 1H NMR titration would support the proposal that the

binding mechanism of 1 for fluoride might occur by the

deprotonation pathway, resulting in color change [40].

Based on Job plot, ESI-mass spectrometry and 1H NMR

titration, we proposed the mechanism of 1-F- binding

pathway as shown in Scheme 2.

Density function theory (DFT) studies

To understand the sensing mechanisms of 1 with F-, the-

oretical calculations were performed in parallel to the

experimental studies. As it was proposed that the hydroxyl

proton of 4-methylphenol group in 1 was deprotonated by

F-, based on ESI-mass spectrometry analysis and 1H NMR

titrations, 1- species was optimized by DFT/B3LYP/6-

31G**/DMSO level. The significant structural properties

of the energy-minimized structures for 1 and 1- were

shown in Fig. 7. The energy-minimized structure of 1

indicated a skew structure between 4-methylphenol and

8-hydroxy-9-iminomethyljulolidine [dihedral angle (1C,

2C, 3 N, 4C) = 148.7o], and the hydrogen bond was

observed between 3N and 5H (Fig. 7a). 1- showed a planar

Fig. 5 a Competitive selectivity of 1 (10 lM) toward F- (240 equiv)

in the presence of other anions (240 equiv). b The color changes of 1
(10 lM) in the presence of F- (240 equiv) and other anions (240

equiv)

Fig. 6 1H NMR titration of 1
(2 mM) with F- (0, 2, 10 and

20 mM)
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structure [dihedral angle (1C, 2C, 3N, 4C) = -179.6o],

and the hydrogen bond was also observed between 3N and

5H (Fig. 7b).

To further gain an insight into colorimetric sensing

mechanism of 1 toward F-, time-dependent density func-

tional theory (TD-DFT) calculations were carried out at the

optimized geometries (Figs. S3 and S4). In order to clearly

understand the absorption energies, the UV–vis spectra of 1

and 12 were compared to their TD-DFT calculations

(B3LYP/6-31G**/DMSO) [Figs. S(3a) and S(4a)]. In case

of 1, the main molecular orbital (MO) contribution of the

first lowest excited state was determined for HOMO ? -

LUMO transition with oscillator strength of 1.1019

[390.34 nm, Fig. S(3b)]. The main MO contribution of the

first excited state of 1- was determined for HOMO ? -

LUMO with oscillator strength of 0.754 [483.86 nm,

Scheme 2 Proposed sensing mechanism of fluoride by 1

Fig. 7 The energy-minimized structures of a 1 and b 1-
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Fig. S(4b)]. As shown in Fig. 8, the deprotonation of

4-methylphenol group in 1 showed mainly that HOMO-1

(-5.791 eV) of 1 destabilized to HOMO (-3.823 eV) of

12 by ?1.968 eV, whereas LUMO of 1 (-1.488 eV)

destabilized to LUMO (-0.907 eV) of 12 by ?0.581 eV.

The difference of the destabilization energy induced the red

shifted spectrum, resulting in the color change from yellow

to orange.

Conclusion

We have presented a simple imine-based naked-eye

chemosensor 1 for the detection of F-. The receptor 1

obviously showed selectivity toward F- through color

change (yellow to orange), which was explained by theo-

retical calculations. Based on the Job plot, 1H NMR titra-

tion and ESI-mass spectrometry analysis, we suggested that

the receptor 1 interacted with F- in a 1:1 stoichiometric

manner. Moreover, the receptor 1 could distinguish F- in

the presence of other anions. Therefore, we believe that this

type of easy-to-synthesized naked-eye chemosensor 1

could contribute to developing a new ‘fluoride sensor’.

Experiment

General information

Unless otherwise specified, all the solvents and reagents

(analytical grade and spectroscopic grade) were obtained

commercially and used without further purification. 1H

NMR and 13C NMR measurements were performed on a

Varian 400 and 100 MHz spectrometer and chemical shifts

were recorded in ppm. Absorption spectra were recorded

using a Perkin Elmer model Lambda 25 UV–Vis spec-

trometer at room temperature. Electrospray ionization mass

spectra (ESI-mass) were collected on a Thermo Finnigan

(San Jose, CA, USA) LCQTM Advantage MAX quadrupole

ion trap instrument. The spray voltage was set at 4.2 kV,

and the capillary temperature was set at 80 �C. Elemental

analysis for carbon, nitrogen, and hydrogen was carried out

by using a Flash EA 1112 elemental analyzer (thermo) in

Organic Chemistry Research Center of Sogang University,

Korea.

Synthesis of receptor 1

To a solution of 2-amino-4-methylphenol (0.12 g, 1 mmol)

in methanol (10 mL), 8-hydroxyjulolidine-9-carboxalde-

hyde (0.22 g, 1 mmol) was added, followed by addition of

three drops of phosphoric acid into the reaction mixture.

The reaction mixture was stirred for 3 h at room temper-

ature, whereupon the red-brown powder was produced. The

powder was collected by filtration, washed with ethyl

acetate, and air-dried. The yield was 93 % and the melting

point 150 �C. 1H NMR (400 MHz, DMSO-d6) d: 14.33 (s,

1H), 8.49 (s, 1H), 7.07 (s, 1H), 6.79 (m, 3H), 3.21 (m, 4H),

2.57 (m, 4H), 2.23 (s, 3H), 1.85(m, 4H); 13C NMR

(100 MHz, DMSO-d6, ppm): 162.01, 157.56, 147.70,

147.14, 133.83, 129.83, 128.45, 126.43, 118.69, 116.18,

112.80, 108.59, 105.73, 49.66, 49.30, 27.00, 21.82, 20.85,

20.52, 20.29 ppm. ESI–MS m/z [1-H?]-: calcd, 321.4;

Fig. 8 Frontier molecular

orbitals and their energies

involved in the UV-vis

absorption of 1 and 1-
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found, 321.4. Anal. Calcd for C20H22N2O2: C, 74.51; H,

6.88; N, 8.69 %. Found: C, 74.85; H, 6.43; N, 8.92 %.

UV–vis study of 1 with various anions

Receptor 1 (3.22 mg, 0.01 mmol) was dissolved in DMSO

(1 mL) and 3 lL of the receptor 1 (10 mM) was diluted with

2.997 mL DMSO/bis–tris buffer (97:3, v/v) to make the final

concentration of 10 lM. Stock solutions (100 mM) of

tetraethylammonium salts (F-, Br-, Cl-, I-, and CN-) or

tetrabutylammonium salts (SCN-, BzO-, N3
-, AcO- and

H2PO4
-) were separately prepared in DMSO. 75 lL of the

stock solution (100 mM) of each anion was transfered to

3 mL of receptor 1 solution (10 lM) prepared above. After

mixing them for a few seconds, UV–vis spectra of 1 were

taken at room temperature.

UV–vis titration of 1

The receptor 1 (3.22 mg, 0.01 mmol) was dissolved in

DMSO (1 mL) and 3 lL of the receptor 1 (10 mM) was

dilluted to 2.997 mL of DMSO-buffer solution (97:3, v/v,

10 mM bis–tris, pH 7.0) to make the concentration of

10 lM. Tetraethylammonium fluoride ((TEA)F, 26.1 mg,

0.1 mmol) was also dissolved in DMSO (1 mL) and

1.5–75 lL of the F- solution (100 mM) was transferred to

the solution of 1 (10 lM, 3 mL) prepared above. After

mixing them for a few seconds, UV–vis spectra were taken

at room temperature.

Job plot measurement

The receptor 1 (3.22 mg, 0.01 mmol) was dissolved in

DMSO (1 mL) and 0.09 mL of the solution was diluted to

29.91 mL of DMSO-buffer solution (97:3, v/v, 10 mM

bis–tris, pH 7.0) to make the concentration of 30 lM. 5.0,

4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0 mL of the

receptor 1 solution were taken and transferred to vials. In

the same way, (TEA)F (2.61 mg, 0.01 mmol) was dis-

solved in DMSO (1 mL) and 0.09 mL the (TEA)F solution

was diluted to 29.91 mL of DMSO-buffer solution (97:3,

v/v, 10 mM bis–tris, pH 7.0) to make the concentration of

30 lM. 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 and

5.0 mL of the F- solution were added to each diluted 1

solution. Each vial had a total volume of 5 mL. After

shaking them for a few seconds, UV–vis spectra were taken

at room temperature.

Competition with other anions

The receptor 1 (3.22 mg, 0.01 mmol) was dissolved in

DMSO (1 mL). Tetraethylammonium salts (F-, Br-, Cl-,

I-, and CN-; 0.1 mmol) or tetrabutylammonium salts

(SCN-, BzO-, N3
-, AcO- and H2PO4

-; 0.1 mmol) were

separately dissolved in DMSO (1 mL). 75 lL of each

anion solution (100 mM) was dilluted to 2.847 mL of

DMSO-buffer solution (97:3, v/v, 10 mM bis–tris, pH 7.0).

75 lL of the F- solution (100 mM) was taken and added to

the solutions prepared above. Then, 3 lL of the 1 (10 mM)

was taken and added to the mixed solutions. Each vial had

a total volume of 3 mL. After shaking them for a few

seconds, UV–vis spectra were taken at room temperature.

1H NMR titration of 1 with F2

Four NMR tubes of 1 (0.644 mg, 0.002 mmol) dissolved in

DMSO-d6 (0.7 mL) were prepared, and four different

equiv (0, 1, 5 and 10 equiv) of the (TEA)F dissolved in

DMSO-d6 (0.3 mL) were added to the 1 solution, respec-

tively. After shaking them for a minute, their 1H NMR

spectra were taken.

Theoretical calculation methods

All theoretical calculations were performed by DFT method

with the hybrid exchange–correlation functional B3LYP

[41, 42] applying the 6-31G** [43, 44] basis set without any

symmetry restrictions. The energy-minimized structure of 1

was obtained in various geometric forms. In case of 1-F-, as

the proton of the hydroxyl group in 4-methylphenol was

deprotonated,11- species was optimized by the same level of

1. In vibrational frequency calculations, there was no

imaginary frequency for the optimized geometries of 1 and

11-, suggesting that these geometries represented local

minima. For all calculations, the solvent effect of DMSO was

considered by using the Cossi and Barone’s CPCM (con-

ductor-like polarizable continuum model) [45, 46]. In order

to investigate the transition energies for the optimized

structures of 1 and 1-, we calculated the lowest 20 singlet–

singlet transition using their ground state geometry (S0) with

TD-DFT (B3LYP) method. The GaussSum 2.1 was used to

calculate the contribution of molecular orbital in electronic

transitions [47]. All the calculations were performed with

Gaussian 03 suite [48].
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