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Abstract
This paper proposes a digital twin (DT) framework for point source applications in environmental sensing (ES). The DT
concept has become quite popular among process and manufacturing industries for improving performance and estimating
remaining useful life (RUL). However, environmental behavior, such as in gas dispersion, is ever changing and hard to
model in real-time. The DT framework is applied to the point source environmental monitoring problem, through the use
of hybrid modeling and optimization techniques. A controlled release case study is overviewed to illustrate our proposed
DT framework and several spatial interpolation techniques are explored for source estimation. Future research efforts and
directions are discussed.

Keywords Remote sensing · Small unmanned aircraft systems (sUAS) · Remotely piloted aircraft system (RPAS) ·
Digital twin · Spatial-temporal modeling

1 Introduction

Environmental sensing and monitoring includes a variety
of applications such as measuring local air quality, soil
remediation, oil spills, ground water quality-tracing, etc.
These applications can include both fixed and mobile
sensors. For example, sensing ecosystem flux can be done
with fixed sensors in the soil, above ground sensors, with
mobile sensors (e.g. ground vehicles or sUAS [36]) or
remote sensing techniques (such as with satellite imagery
or manned aircraft [47]). Typically fixed sensor approaches
work well to provide precise ecosystem flux measurements
(e.g. chambers, autochambers, and eddy covariance towers
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[13]). In terms of site level emissions, fixed open path
lasers have been used to evaluate and compare with
accepted Environmental Protection Agency (EPA) methods
(e.g. dairy farms) [10]. Within the past few years, several
works in the area of environmental sensing with sUAS
have been done (see the comprehensive review by [18]).
Typically the sensors consist of low cost chemical sensors
(e.g. amperometric, metal-oxide, non-dispersive infrared,
or photo-ionization detectors) or higher cost tunable diode
laser absorption spectroscopy (traditional open/closed cell -
TDLAS or backscatter based - sTDLAS). Other techniques
like optical gas imaging, which uses thermal camera based
sensing have been used with sUAS. For instance, the
sTDLAS (e.g. Pergam Methane mini-G (SA3C50A)) has
been used for determining spatial methane in permafrost
[38]. In the oil and gas industry, the TDLAS (e.g. open
path laser spectrometer - OPLS [22], or path integrated)
has been used for detection [50, 51] and for quantification
[27], such as in quantifying the Alberta Methane Field
Challenge (AMFC) site emissions [52]. The use of fixed-
wing sUAS have been used as well in both detection [15]
and quantification [8].

Due to the large variety of approaches and applications
of environmental sensing, the focus of this paper will
be on ground-to-air emissions (as an extended versions
of the conference paper [30]) with an application to gas
plumes (e.g. fugitive methane). The motivation of studying
fugitive methane (CH4) gas, stems from the fact that
methane has a large green house gas (GHG) warming
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potential relative to CO2 and occurs from both natural and
anthropogenic sources. Modeling gas plumes in general
can be done using a variety of tools (e.g. deterministic
and stochastic approaches) which provide information about
how the plume may develop given a set of initial and
boundary conditions. However, these visualization require a
certain degree of model fidelity to capture realistic behavior
(i.e. plume meandering and trapping). Computational fluid
dynamics approaches can be applied but suffer from high
computational cost. Stochastic methods have shown better
computational efficiency but for a given initial condition
the output is an ensemble (due to the inherent randomness)
and presents difficulty in implementing continuous time.
On the other hand, hybrid modeling (which encompasses a
combination of stochastic and deterministic methods) can
provide computational efficiency while maintaining highest
possible fidelity. In practice, computational efficiency of
these models would need to be suitable for deployment on a
laptop. Thus, there exists a trade-off between model fidelity
and run-time. This is important for applying concepts such
as DT to further improve on ES work.

What is a DT? Some of the earliest work of using
physical twins (or hardware twins) can be seen as early as
National Aeronautics and Space Administration’s (NASA)
Apollo program [16]. In this case there existed at least
two space vehicles or rovers at once. This allowed for
the continuous testing of code, maneuvers, and conditions
before sending them to the deployed version. Software can
also be introduced to the hardware twin, as in the ‘iron
bird’ which combined a physical interface of a plane cockpit
with an aerodynamics simulation for training purposes.
The simulation was used for a visual aide as well as to
compute the meteorological conditions and resulting forces
on the plane [16]. Some of the early reports of the current
concept of digital twin (as digital equivalence of a physical
product) showed up in a product lifecycle management
course at the University of Michigan in 2003 taught by
Michael Grieves. Since then a white paper was written in
reference to virtual factory replication [28]. It is explained
that the digital twin (DT) in this scenario contains three
parts: (1) physical products in real space (2) virtual products
in virtual space and (3) and connections that tie together
the real and virtual products. The use cases for DT are:
(1) conceptualization - visualization of the physical and
virtual products, (2) comparison - compare physical product
behavior with the virtual product to improve results and (3)
collaboration - solutions found can be applied immediately
to other factories (or systems). For ES, the environment
can be full of complexity and having a DT can provide
a deeper understanding between the sensors and physical
parameters such as source rate, location, and atmospheric
conditions. Additionally, DT’s have the ability to update the

system parameters, over time, as well as give insight on
performance metrics.

This paper proposes a DT framework for ES from a point
source emission as an extended version of the conference
paper in [30]. A controlled release case study is used to
solve an optimization-based behavior matching problem of
the DT framework, using the estimated concentration signal,
ĉm = f (x, v|θ) (where x is the position of the sUAS,
v represents the wind field and θ is the DT parameters),
and the measured concentration signal, cm, with a single
sUAS measurement system. The mass balance method is
applied to experimentally quantify the source emission rate.
This paper extends the work in [30] by: defining DT levels
and capabilities; adding additional details and figures of
the DT model, approach, sensitivity of parameters, and
how the observation problem is effected by sensor location
(i.e. measurement operator); exploring additional spatial
and spatial-temporal interpolation methods to quantify the
source and compare data between the DT simulation
and physical experiment; proposing the use of Mittag-
Leffler function into the spatial-temporal gas distribution
modeling framework. The paper is organized as follows:
Section 2 describes the DT framework, Section 3 overviews
the controlled release experiment, setup and behavior
matching optimization, Section 4 we conclude on the
simulation results, and Section 5 provides a discussion
on future work to further this field. This paper proposes
a DT framework for ES with a gas plume source
(see Fig. 1).

2 The Proposed DT Framework

In order to discuss a framework there needs to be some
agreed upon definition of DT. Over the years there
have been several variants of the DT definition such as
those shown in Table 1. The Mechatronics Embedded
Systems and Automation Lab has since added a more
general definition which is as follows, “A Digital Twin
is the combination of multiple, individual, and detailed
simulation models (continuous, discrete, hybrid), where
its interconnection represents the dynamics of a complex
system, which is updated periodically (windowed or real
time) with the system information in order to reflect
the system current status as well as predict its future
behavior and possible faults”. For ES, the model needs
to be selected such that there is a trade off between
fidelity and computational speed. Considering the quote
from statistician George Box, “all models are wrong, but
some are useful”, we need the desirables of the DT model
to be capable of: (D1) exhibiting relevant digital artifacts
with suitable level of fidelity, (D2) short or long time-scale
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Table 1 Definitions of Digital Twin [4]

Definition Authors Year

DT is a virtual, digital equivalent to a physical product Grieves [28] 2003

Up-to-date representation of an actual physical asset in operation Mathworks [5] 2019

Dynamic virtual representation of a physical object or system, usually across
multiple stages of its lifecycle. It uses real-world data, simulation or machine
learning models, combined with data analysis, to enable understanding, learning,
and reasoning.

IBM [2] 2020

Software representations of assets and processes that are used to understand, predict,
and optimize performance in order to achieve improved business outcomes.

GE Digital [6] 2019

DT is a perfect digital copy of the physical world: a digital twin. This twin would
enable you to collaborate virtually, intake sensor data and simulate conditions
quickly, understand what-if scenarios clearly, predict results more accurately, and
output instructions to manipulate the physical world..

Deloitte [3] 2020

An integrated Multiphysics, multiscale, probabilistic simulation of an as-built
vehicle or system that uses the best available physical models, sensor updates, fleet
history, etc., to mirror the life of its corresponding flying twin

NASA[26] 2012

A digital twin is a multi-faceted dynamic set of smart digital models of a system or
a subsystem along with all its constituents, which accurately represent the design of
a product, production process or the performance of a product or production system
in operation.

Dufour et al. [23] 2018

DT are precise, virtual copies of machines or systems driven by data collected from
sensors in real time, these sophisticated computer models mirror almost every facet
of a product, process or service.

Tao et al. [46] 2019

characteristics evolves along with the real system given
the same conditions, and (D3) can be used to solve
relevant problems for the system or improving methodology
[30].

The DT concept can also be broken into four different
stages or levels based on their current implementation:
(L1) Pre-Digital Twin, (L2) Digital Twin, (L3) Adaptive

Digital Twin, and (L4) Intelligent Digital Twin. Each
stage has increasing levels of model sophistication. Aside
from L1, all of the levels have a physical twin. As the
DT levels go from L2 to L4 the data acquisition from
the physical twin increases. Different system health and
performance parameters can be extracted for predictive
maintenance (from batch updates to real-time updates).

Fig. 1 Digital twin framework diagram
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Additionally, these stages can start to incorporate machine
learning (ML) in operator preferences as well as for the
system/environment [34].

The proposed DT framework for a point source first
starts on L1 with a proposed model for representing the
complex system. In the case of gas concentration, the system
is governed by a partial differential equation such as the
advection diffusion equation,

∂tC = ∇ · (D∇C) − ∇ · (vC) + source, (1)

where the C represents the concentration of the gas, D

is the diffusion coefficient, and v = [u, v]T is the wind
vector field. The source can be represented using Kronecker
delta function δs = δ(x − xs)δ(y − ys)δ(z − zs), where
xs = [xs, ys, zs]T is the location of the point source. The
wind field parameters can be solved generally by using the
something like the incompressible Navier-Stokes equation,

∂tv + (v · ∇)v − ν∇2v = −∇w + g. (2)

Here ν is the kinematic viscosity, w is the thermodynamic
work, and g is the gravitational acceleration. Solving these
systems consecutively can be expensive and thus, some
assumptions need to be applied to simplify the models.
One such approach to solve this problem was proposed by
Farrell et al. [25] and is summarized here for completeness.
The first assumption is to break the concentration dynamics
into discrete filaments (or packets of molecules) based
on different length scales (i.e. large scale advection (a),
intermediate scale turbulent mixing and stirring (m), and
local small scale diffusion (d)). The transport of the k-th
concentration molecule can then be described by, ẋk =
v(x) = va + vm + vd . However, the small scale diffusion
term can be absorbed into the shape of the filament, such
that the filament’s i-th location can be described as,

ẋi = v(x) = va + vmi
. (3)

Now the only thing left to resolve is the wind vector field.
One approach is to look at average wind vector such that
v = v̄ + v′, where the overbar (·̄) represents the average
and the prime (′) denotes the deviation from the average.
Substituting the decomposition of the wind vector into
(2) and using the following assumptions the Navier-Stokes
equation can be drastically simplified:

1. Coriolis forces, geostrophic winds, and molecular
viscosity can be deemed small and neglected;

2. Measurements are conducted close to the ground where
winds are relatively constant w.r.t. the altitude.

The wind field can then be represented by the following
equations that resembles the viscous Burgers equation,

∂ū

∂t
= −ū

∂ū

∂x
− v̄

∂ū

∂y
+ Kx

∂2ū

∂x2
+ Ky

∂2ū

∂y2

∂v̄

∂t
= −ū

∂v̄

∂x
− v̄

∂v̄

∂y
+ Kx

∂2v̄

∂x2
+ Ky

∂2v̄

∂y2
. (4)

This is realized by using the simplest K-closure method,
which relates the diffusivity (Kx,y) to, u′u′ = −Kx

∂u
∂x

and u′v′ = v′u′ = − 1
2 (Kx

∂v
∂x

+ Ky
∂u
∂y

) and similarly

for the v′v′, and v′u′. For the simulation aspect, the wind
field meandering can be produced by perturbing the flow
with colored noise using a second order transfer function
approach, H(s) = Ga/(s2 + bs + a) driven by white noise
[25]. This colored noise is updated on the corners of the
finite grid and adjacent boundary conditions are linearly
interpolated (see Fig. 2). The meandering behavior (see
Fig. 3) can be adjusted by scaling a, b, G and Kx,y . The
interior nodes can be solved implicitly [37] or explicitly by
finite differences [40].

The large scale advective term, va , can be calculated
by using a bilinear interpolation between the nearby wind
vectors points or estimated using the nearest neighboring
point relative to the filament position, xi . The grid size used
to calculate the the wind field can remain course (large Δx

and Δy) as it reflects the larger length scales of the model.
Additionally the large spatial separation between points
helps to increase simulation runtime. To maintain efficiency
we used the nearest neighboring point for this work. To
calculate the intermediate scale term, vm, we use a random
process satisfying, ω̇ = A′ω + B ′η and vm = C′ω + D′η,
where ω ∈ Rn and η is a white noise random process with
spectral density σ 2

η . The matrices A′, B ′, C′, and D′ are
appropriately sized. The resulting standard deviation grows
as Gση

√
t . In the simplest 2D case D′ = 0, (B ′)T = C′ =

[1, 1], and A′ = I , where I is the identity matrix.
To calculate the small scale diffusion, vd the use of a

growth term, R(t), is needed. This growth term represents
the standard deviation of the packet of molecules inside the
discrete filament,

dRi

dt
= γ

2Ri

→ Ri(t) = (R2
i0 + γ t)1/2,

where ri(t) = ||x − xi || is the Euclidean distance from
the sensor and the i-th filament, Ri0 = Ri(0) and γ

Fig. 2 Scheme for updating the colored noise in the corners
interpolating the adjacent boundaries
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Fig. 3 MATLAB example of the digital twin with meandering

is a positive scalar. This allows for the concentration of
individual molecules in a filament to be calculated by,

Ci(x, t) = Q√
8π3R3

i (t)
exp

(
− r2

i (t)

R2
i (t)

)
, (5)

where Q is the filament source rate in molecules per
filament. The total concentration measured, C(x, t), can
be calculated given an effective sensor area, Ae, where N

represents the number of filaments inside Ae = πr2
e .

C(x, t) =
N∑

i=1

Ci(x, t) (6)

The effective area can be approximated as a circle with
radius re. The sensor can be modeled as a low pass filtered
system with thresholding, ċ = fBW (C(x, t) − c). The
sensor bandwidth is fBW and threshold is λ. The measured
concentration, cm would then be,

cm(t) =
{

c(t), if c(t) > λ

0, otherwise
. (7)

This current model can represent the gas plume as 2D
flow. However, in most scenarios the gas needs to be
represented as a 3D flow usually with building resolving
capabilities. To start we will examine just rural case with no
buildings. Furthermore solving the wind field for 3D case
results in an increase in computation because the number of
discrete points grows as 1/Δ3 if Δ = Δx = Δy = Δz.

In [30], the model was extended to 3D by utilizing a
detection probability based on experimental observations
in [31, 45]. The experiments showed that the detection
probability varies as a function of altitude and wind speed.
An example of this can be seen in Fig. 4, where the sigmoid
function can be fit to the probability of detection given
different wind conditions or atmospheric stability classes.
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2016, wind 2.8 0.4 m/s
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2017, wind 1.3 0.9 m/s
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Fig. 4 Contrast in measurements of two different wind conditions
stable (2016) vs unstable (2017) under controlled methane release of 5
standard cubic feet per hour (SCFH) at 30m downwind [31]

By using this knowledge one can essentially extend the
2D model to 3D. Given that sensors do not always detect
the target gas, we can introduce a conditional detection
probability Pd . Letting the Pd be a function of downwind
distance d, altitude z, and wind velocity |va|. Making the
assumption that the lateral or cross wind position does not
affect the probability with respect to the simulation, the
relation becomes, Pd(δd |z) = f (d, z, |va|). Given the nature
of the mass balance method, the downwind distance d does
not readily change, and therefore can be approximated as

Pd(δd |z) ≈ Pd(δ)

1 + eM(z−zbias )
. (8)

Here M is the slope at the half probability point, and zbias

is the altitude at which half probability occurs. From the
sigmoid curves in [31] (see Fig. 4), Pd(δ) = [0.62, 0.9],
M = [0.42, 1.5], and zbias = [7.2, 9], where the average
can be chosen to mirror the conditions of the experiment.
However, if the gas is not in contact of the ground the
distribution does not capture the vertical behavior. By using
a Gaussian Normal distribution,

Pd(δd |z) ≈ Pd(δ) exp
(−(z − zbias)

2

2σ 2
z

)
, (9)

we can alleviate this limitation. Although this only works if
the source location and downwind distance are known ahead
of time. Additionally, there is a relationship between the
value of M , zbias , and the atmospheric stability classes that
needs to be further investigated. The atmospheric stability
classes (A-F), first introduced by Pasquill in 1961 and
later reformulated by Gifford, are typically referred to
as the Pasquill-Gifford (PG) curves [32]. The PG curves
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relate wind speed and solar irradiance to the dispersion
coefficients that govern the spread of the plume. This is
represented in the Gaussian plume model, or sometimes
referred to as the infamous ‘bell curve’,

C(d, dl, z, H) = Qp

πσdl
σzU

exp (
−dl

2

2σ 2
dl

) ×
[

exp (
−(z − H)2

2σ 2
z

) + exp (
−(z + H)2

2σ 2
z

)
]
, (10)

where dl is the lateral (or crosswind) distance from the
plume centerline, H = h + ΔH is the effective height of
the plume, h is the stack height, Qp is the source rate in g/s
and ΔH is the plume rise [7]. The plume rise term can be
calculated using models such as Holland’s formula which
is dependant on temperature and wind speed. However,
Holland’s formula was designed for exhaust stacks and also
takes into consideration the pressure, stack diameter, and
temperature of the ambient air and stack. As a result if
the stack velocity is small, such as with sub-surface leaks
that diffuse through the ground, the plume rise term tends
toward zero. Therefore other factors should be considered,
such as lapse-rate, which takes into consideration how the
temperature changes as a function of altitude. Furthermore,
for small leaks, even surface temperature may come into
effect by introducing vertical momentum through natural
convective forces. Holland found that there is a small
correlation between the plume rise and the temperature
gradient near the ground. Briggs mentioned that the plume
rise is only dependent on the temperature gradient of the air
to which the plume is rising. It is also mentioned that the
gradient near the ground is not a good representation of the
gradient at higher altitudes [17]. Thus, this part of the DT
framework will be reserved for future research.

The simulation source rate, Q̂∗, given in molecules per
second, and is determined by the number of filaments that
are discretely released from the point source location. The
particular way the filaments are released depends on two
parameters, the number of filaments per puff nf and the
number of puffs per filament np. The filament source rate
can then be defined by Q = Q̂∗/(nf np), which is used
in (5). The different combinations of these parameters can
result in qualitative changes in the measured signal from
the sensor. This qualitative behavior can be matched to
the measured signal of the physical system and sensor
(i.e. behavior matching). The behavior matching can be
undertaken given an observable data set that captures these
qualitative changes within the model. The key point here is
observable data and thus the question becomes, how to get
it? The answer depends generally on two things: sensing
in the right place and sensing at the right time. Given a
set of observations s we want to infer the states or plume
field, xi . This observation problem can be formulated as

a state estimation problem using orthogonal decomposition
methods based on singular value decomposition(SVD)
[24]. Essentially the problem can be represented as a L2

minimization,

s = Hx ≈ Hν, (11)

ν ∈ arg min
ν̃

||s − Hν̃||22, (12)

where  represents the orthogonal modes and ν the
associated coefficients. This approach can yield solutions
that are often ill-posed and not necessarily unique. However,
it can be shown that the estimation error depends on the
approximation basis  (othrogonal modes) as well as the
measurement operator, H,

||xi − x̂i || = ||(I − (H)+H)xi ||. (13)

The symbol + represents the Moore-Penrose pseudo-
inverse. The measurement operator depends entirely on the
sensor location and not the orthogonal modes. Therefore,
the choice of sensor location is an important task. For the
single sUAS measurement system, this comes in the form of
path planning and is subject to disturbances from changes in
the stability of the wind. When applied to the mass balance
method, path planning involves scanning back and forth at
different altitudes inside a region of interest. The size of this
region can incorporate twice the expected plume dispersion
(deviation from the plume centerline) σdl

and σz, such as
in [31] to ensure a likely encapsulation of the plume (see
Fig. 5). This approach aims to capture rich signal data for
conducting the mass balance method. However, this process
takes time to complete with a single sensor system, and thus
can present spatial-temporal issues when reconstructing the
mass flux.

To advance the pre-Digital Twin model (L1) to a Digital
Twin (L2) we need to have the physical twin exist and
have the virtual system model of the physical twin. This
step requires a system identification like optimization of
the pre-Digital Twin model, given a dataset with observable
properties and tunable parameters to minimize on. Once
this minimization is complete the Digital Twin will allow
for testing different path planning strategies to improve
mass balance method results. The tunable parameters (see
Fig. 6) in this DT model consist of: the effective radius re,
the number of filaments per puff nf , the number of puffs
per second np, the intermediate scale mixing and stirring
dispersion ση, and a correction factor cf where the corrected
simulation source rate is (Q̂∗)c = cf Q̂∗. The value of Q̂∗ is
chosen to be the same as the physical source rate, such that
Q = (Q̂∗)c/(nf np), and cf is determined through behavior
matching optimization.
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Fig. 5 An example curtain flight
path for mass balance
calculations

3 Case Study

The experimental data used to convert the L1 Digital Twin
to L2 was based off a controlled release single source
field experiment in the Merced Vernal Pools and Grassland
Reserve just north of the University of California, Merced
campus. The source setup included a pure methane bottle
connected to a pressure regulator, followed by several
meters of PFTE (Polytetrafluoroethylene) tubing, where a
rotameter flowmeter gauge was placed for controlling the
release rate. Additional PFTE tubing was used to connect
the output of the flowmeter to a 5 Gallon bucket filled
with coarse rocks (≈ 1 cm in diameter). The rocks served
to slow the stack velocity down and let the wind carry
the methane, simulating a surface point source. The source
rate was initially set to 10 SCFH, whereas after laboratory

testing the source rate was calibrated to be Q∗ = 12.9
SCFH. The landscape of the site was relatively flat with
little topology and no surface obstructions (see Fig. 7a). A
sUAS, namely the DJI M210 (see Fig. 7b), was equipped
with the OPLS sensor, a highly sensitive spectrometer
(detection rates of 10ppb s−1) and acquisition rates of 5Hz
[22]. The atmospheric stability during the experiment was
determined to be C and B (slightly to moderately unstable)
using the PG curves [32]. The wind speed and direction
was measured with a RMYoung 3D ultrasonic anemometer.
The experiment consisted of 16 downwind flight paths of
horizontal transects ascending from ground level till a clean
air fetch was reached, referred to as a curtain (see Fig. 5).

Once the experimental data is collected, the most data
information rich flights are to be selected to perform
behavior matching with the L1 digital twin. In this

Fig. 6 The timeseries behavior
and sensitivity with tuning
parameters θ given one pass
through the plume
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Fig. 7 (a) Experiment location
at Merced Vernal Pools and
Grassland Reserve. The yellow
star indicates the source, the
green triangle is the RMYoung
anemometer, and the flight area
is shown red dotted line. (b) DJI
Matrice 210 (M210) equipped
with a sensitive methane sniffer
developed by [22] and attached
to the DJI Skyport. (c) Example
mass balance measurement for
one curtain flight
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experiment, some of the curtain flights (such as flights
13 and 14) resulted in no detected emissions and cannot
be used to behavior match the model (see Table 2). After
analysing the 16 flights using the mass balance method
(see Fig. 7c), flight 1 showed stable wind conditions,
consistent methane detection throughout the ascending
transects, and good estimation of the true source rate.
Thus, flight 1 was chosen for behavior matching the sensor
signal of the L1 digital twin to the experimental sensor
signal (see Fig. 8). The simulation source rate Q̂∗ was
set to (Q̂∗ = 2.4 × 1024 molecules/s). Using the PG
curves given the current meteorological conditions (i.e.
atmospheric stability) the initial condition of ση was chosen
to be 8 m. The wind speed and direction measured from
the experiment was used as a direct input into the L1
digital twin, using the mean wind field approximation.
Using the behavioral characteristics of the hyperparameters
shown in Section 2 and in an attempt to reduce complexity,
let nf = 1, such that nf np has units as filaments per
second. Heuristically tuning the hyperparameters, to give
a best guess of θ = [cf , re, np, ση], the following initial
conditions were chosen: cf = 0.2, re = 5 m, np =
40 puffs/sec, and ση = 8 m. It can be also seen that there is a
lag present in the system (see Fig. 8) which can be attributed
to model inconsistencies as well as initial conditions of
the plume. Since there is currently no implementation of
plume rise (future research), the average altitude where
concentration detection occurred was used to determine the
zbias term and the vertical dispersion was set to σz = 5 m.

Fig. 8 The concentration time series in ppm during flight curtain 1,
where np = 40 puffs/sec and the symbols τgi , τpi , and τlag represent
the i-th gap length, i-th pulse length, and the time lag between the
simulation and experimental data [30]

If we represent the L1 digital twin given hyperparameters
θ as a function at time t ,

{ĉm, xi}t = {f (x, v|θ)}t , (14)

with the sUAS position (i.e. sensor position) x and the
wind speed and direction measurement using the ultrasonic
anemometer (RMYoung) v. The output consists of a
concentration measurement ĉm(t) and filament positions
xi. In the physical experiment the locations of the

Table 2 Results from mass balance method for 16 curtain flights are shown below along with the average experimental wind speed, ue and the
cos βe between the normal vector of the flux plane

Flt Q∗ (Q̂∗)K (Q̂∗)p=2
IDW (Q̂∗)p=1

IDW (Q̂∗)KDM (Q̂∗)α=1
KDM (Q̂∗)α=0.1

KDM ue cos βe

1 14.2±3.9 13.0±2.8 12.1±2.6 12.4±2.6 12.0±3.2 12.2±3.2 12.2±3.2 1.82±0.43 0.83

2 11.3±3.7 7.0±2.3 6.5±2.2 6.9±2.3 7.0±2.7 7.0±2.6 7.0±2.6 1.75±0.57 0.96

3 2.4±1.5 1.0±0.7 1.1±0.8 1.1±0.8 1.5±1.3 1.5±1.4 1.5±1.4 1.18±0.50 0.67

4 9.6±4.3 6.6±3.0 7.8±3.5 7.3±3.3 8.2±4.2 8.1±4.1 8.1±4.1 1.30±0.51 0.87

5 6.8±3.4 6.2±3.1 6.9±3.4 6.7±3.3 7.6±4.2 7.6±4.1 7.6±4.1 1.25±0.58 0.91

6 7.5±1.8 12.8±3.1 13.3±3.2 13.2±3.2 13.8±4.5 13.8±4.2 13.8±4.3 2.27±0.54 0.97

7 4.6±2.1 6.7±3.3 7.5±3.7 7.5±3.6 8.0±4.4 7.9±4.3 7.9±4.3 1.37±0.57 0.67

8 3.2±1.0 9.2±3.0 8.7±2.8 9.1±2.9 9.0±3.2 9.1±3.2 9.0±3.2 1.93±0.57 0.93

9 4.6±2.5 6.3±3.5 7.1±3.9 6.9±3.8 7.2±4.3 7.3±4.3 7.3±4.3 1.49±0.63 0.83

10 3.5±2.2 4.1±2.7 3.9±2.5 3.9±2.6 4.2±3.3 4.4±3.3 4.3±3.3 1.45±0.81 0.86

11 2.6±1.0 8.4±2.2 9.5±2.5 9.3±2.4 9.8±3.3 9.8±3.2 9.8±3.2 1.25±0.54 0.52

12 2.3±1.0 7.5±2.0 8.5±2.3 8.4±2.3 9.0±2.8 8.9±2.7 8.9±2.7 0.90±0.47 0.43

13* 0.9±0.3 15.6±5.4 16.8±5.8 15.7±5.4 17.7±6.9 17.3±6.8 17.5±6.8 2.47±0.87 0.98

14* 1.5±0.4 22.5±6.0 23.3±6.2 22.9±6.1 24.4±7.8 24.6±7.6 24.6±7.6 2.52±0.66 0.94

15 9.0±2.0 13.2±2.9 12.1±2.7 13.2±2.9 11.4±3.4 11.7±3.2 11.8±3.3 2.07±0.46 0.96

16 7.6±2.6 5.4±1.9 5.1±1.7 5.3±1.8 4.7±3.1 4.4±3.2 4.5±3.2 0.52±0.27 0.27

The flow rates (experimental Q∗ and simulation Q̂∗) are in SCFH, the subscripts denote the spatial interpolation method, and the superscripts are
the associated parameters, where K is Kriging, IDW is inverse distance weighting, and KDM is Kernel DM+V
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plume filaments are not observable given that methane
gas is not visible to the human eye. The plume can
potentially be observed using a large number of high
quality sensors, of which, is expensive, difficult to set up,
and only be inferred using spatial interpolation techniques.
Thus, the only output available to optimize over is the
concentration measurement, cm(t), in the least squares
sense. In order to compensate for the stochastic behavior
of the plume dynamics, the cost function was designed
to average nT = 20 trials. Unfortunately, this leads to
multiple possible solutions to the minimization. Therefore,
additional constraints on the hyperparameter space, Ω , and
regularization can be added to constrain the magnitude of
the concentration measurement such that,

θ = arg min
θ∈Ω

J(θ), Ω = {θ |θmin ≤ θ ≤ θmax}, (15)

J (θ) = 1

nT

nT∑
k=1

[
0.2(

nt∑
i=1

{cm}i −
nt∑

j=1

{ĉm}j )2 +

0.8(cmax − ĉmax)
2
]
, (16)

where cmax = max(cm). The cost function weights were
chosen to balance the effects of each term and were
determined from trial and error.

The solution to (15) can be found using a variety of
optimization methods and techniques, such as Gradient
Descent or Stochastic Gradient Descent. Faster convergence
can be achieved using Hessian based approaches but
due to the cost of the forward model calculation and
considering complexity of implementation these methods
were not considered. Other gradient free approaches are
more desirable for this problem such as Genetic Algorithm,
Extremum Seeking Control, or Pattern (Direct) Search can
be applied. With simplicity in mind, the Pattern Search
Optimization was used here to behavior match the digital
twin to the experimental data. After 65 iterations and over
390 cost function evaluations (7880 forward model runs) the
gradient of the cost function dJ/dt ≈ 0 (see Fig. 9). The
model parameters were found to be: cf = 0.11, re = 7.5 m,
np = 78 puffs/s, and ση = 8 m.

To calculate and perform the mass balance method,
sometimes called the box method, requires a way to
measure the flux entering or leaving a control volume.
Typically, upwind and downwind curtain flights are used
to measure the flux. However, in the case of a controlled
release the downwind curtain flight is sufficient to calculate
the flux, granted the plume is encapsulated in the flight
path (see Fig. 5). Using the timeseries vector cm =
[cm(Δt), cm(2Δt), . . . , cm(ntΔt)]T with the corresponding
measurement locations, {x}nt

1 , a concentration matrix, Cm

can be estimated on an n by m spatial grid through spatial
interpolation methods. The flux calculation can be then

Fig. 9 Pattern search method convergence plot for behavior matching
of flight 1 given the cost function, J (θ). The algorithm converged as
mesh size tolerance was reached to ≈ 5.813

given as the integration over curtain area with the average
wind vector multiplied by the cosine angle of the normal
vector to the curtain with the enhanced concentration,

φ =
∫

A

v̄ · n̂[(Cm − Cb)]dA. (17)

Here Cb represents the background concentration measure-
ment. An example of a flux plane calculation can be shown
in Fig. 7c. Several kinds of techniques can be applied to the
timeseries data to generate Cm, such as Ordinary Kriging,
Inverse Distance Weighting (IDW) or statistical gas distri-
bution modeling (e.g. Kernel DM+V/ W). For the case of
Kriging, a linear unbiased estimator, can be solved using a
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Fig. 10 Response of the single parameter Mittag-Leffler function for
Eα(−tα) as α ∈ [0, 1]
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Fig. 11 Here the turbulence intensity, Ti = σu/ū, of the wind is plot-
ted against the normalized flow rate, which trends toward Q̂∗/Q = 1
as Ti → 0. A boxplot of the source estimation for each flight (set
of 10 simulations), given a spatial interpolation method, is shown for
each Ti condition observed from the experimental data. A smaller

boxplot (shown within each boxplot) contains tails that represent the
uncertainty. We can observe 1) several flights agree with experimental
data 2) majority of flights underestimate the flow rate in short due to
increased Ti and 3) the remaining flights that disagree are likely not
capturing vertical plume behavior

variogram (or semi-variogram),

γ (h) = 1

2N(h)

N(h)∑
i=1

(s(x) − s(x + h))2. (18)

Generally, the redundancy and closeness covariance matrix
are calculated from fitting the experimental variogram to
a function with respect to the spatial distance or lag,
such as the exponential or Gaussian, and knowing the
covariance of the measured points (referred to as the sill).
This method requires second order stationarity in the spatial
observations [49]. Unfortunately this is only approximately
the case during stable atmospheric conditions. Methods
such as IDW look at the inverse distance when determining

Fig. 12 The detection concentrations from the simulation and
experimental sensor are compared in a probabilistic histogram.
While the distributions show that the majority of indications are
near background levels, they also agree with the less likely larger
concentrations detected in the experiment

weights and does not consider other spatial statistics as in
Kriging. There has been some efforts to improve this by
looking at minimum error variance within IDW [12]. Wind
information has been incorporated into Kernel DM+V/W
approach in 3D [42]. Another adaptation to statistical gas
distribution mapping approach was implemented in [29]
by using the Gaussian plume kernel, which incorporates
the wind information into the covariance function in
determining the weights. The downside to this approach
is that it assumes the source location. This is not ideal
for determining the flux in this case. The spatial-temporal
effects on modeling have been looked at as a separation
between the spatial covariance and the exponential decay
between temporal measurements [11, 53],

w
(k)
i = N (|{x}i − x(k)|, σ )ϕ(t∗, ti), (19)

where N is a Gaussian weight function, (·)(k) represents the
k-th grid point, {x}i are the sensor measurements at time ti
and ϕ is given as,

ϕ(t∗, ti) = e−aϕ(t∗−ti ). (20)

However, when dealing with complex systems such as
in turbulent environments there may be several factors
that determine what value of aϕ is. If we look at
the weight summation of exponentials, with elements
increasing towards infinity, it can be described by fractional
order dynamic behavior [35]. The Mittag-Leffler function
[44] can be used to describe this behavior,

Eα,β(t) =
∞∑

k=1

tk

�(αk + β)
, (21)
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Fig. 13 The detection altitude versus measured concentrations
from the simulation and experimental sensor are compared. The
distributions match well with experiment and the probability of
detection declines rapidly as the altitude increases from 10-15 m

such that when α = β = 1, E1,1(t) = et . Given that β = 1
and letting α decrease we can see in Fig. 10 that the tail
behavior decays much more slowly than the exponential
function. By combining the approach in (19) with (21) we
can apply a new weighting scheme with tuning parameter,
α,

w
(k)
i = N (|xi − x(k)|, σ )Eα,1(−aϕ |t∗ − ti |α). (22)

The value of t∗ can be chosen for each grid point based
on the time ti of the closest measured point that minimizes
|{x}i − x(k)|. For the single sensor mapping problem we test
the change in sensitivity for α = 1, 0.5, and 0.1.

After optimization of the L2 digital twin, using the
experimental position and wind measurements, each flight
was simulated 10 times. The spatial interpolation was
carried out using Kriging, IDW, and Kernel DM/ V
to see a comparison in quantitative results across the
different approaches. It can be observed that all the spatial
interpolation methods tend to perform similarly. Also, for
the spatial-temporal method using (22) does not show
noticeable performance improvement. Future work can be
done to address the optimal configurations of these methods
and their hyperparameters. It can be observed that the
source rate estimations fluctuate in value depending on
current weather conditions and turbulence (see Table 2).
Given small deviations in the wind, the sUAS curtain flight
path can appropriately capture the spatial data through
the mass balance plane. When the wind deviates slightly,
the data we capture can sometimes be spread out over
the flux plane (i.e. like a blurred image). As a result,
this can lead to higher source rate estimations or to poor
detection and characterization of the plume. Since the

wind direction fluctuations correlate to different stability
classes it makes sense that there should be some correlation
with the turbulence intensity as well (see Fig. 11). Thus,
mindfulness of the current atmospheric conditions are
important when planning and conducting these flights.
Furthermore, the wind behavior, to some extent, is always
changing in magnitude and shifting in direction. It seems
this behavior is very rarely calm and stable, which may
put physical limitations on the sensitivity of accurate
spatial sampling with single mobile sensor systems (at
least in the case for air). Comparing the experimental data
to that of the digital twin one can observe qualitative
similarities in the distribution of sensor detections, as seen
in Fig. 12. Additionally, larger less frequent spikes at lower
altitudes were observed that are consistent with what was
experimentally observed (see Fig. 13).

4 Conclusion

In this work we develop a L2 DT model for environmental
sensing application of a point source emission on the
ground using sUAS. We give background details on
spatial interpolation and modeling of sparsely measured
concentration points, and also propose the use of the Mittag-
Leffler function for capturing fractional order dynamics
of the spatial-temporal gas distribution modeling. We
compared the results from [30] with different spatial
interpolation and modeling techniques. The results (shown
in Fig. 11) indicate that the choice of spatial interpolation
and modeling technique is less sensitive to method choice
and more dependent to the DT model itself. The average
mass balance calculation (excluding flights 13 and 14)
of the source rate for the experiment using Kriging was
determined to be 6.4±2.4 SCFH, and the average mass
balance calculation of the source rate for the simulation
results are 7.7±2.6 SCFH for Kriging, 8.1±3.4 SCFH for
Kernel DM+V, 7.8±2.7 SCFH for IDW(p = 2), 7.8±2.7
SCFH for IDW(p = 1.5), 7.9±2.7 SCFH for IDW(p = 1),
8.1±3.3 SCFH for TD Kernel DM+V(α = 1), 8.1±3.4
SCFH for TD Kernel DM+V(α = 0.5), and 8.1±3.4
SCFH for TD Kernel DM+V(α = 0.1). Although the DT
simulation results do not reflect the true source rate, they
do reflect the experimental emission estimates, which is the
goal of the DT. The qualitative behavior of the DT was also
observed to be comparable to the mass balance calculations
of the experiment as a function of turbulence intensity, with
more accurate estimates when atmospheric conditions are
stable.

This work also provided an extension to the conference
paper in [30] by: (1) defining the DT and the associated
levels and capabilities; (2) extending the details on the
L2 DT model used in this study including the figures
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showcasing the flight path, probability of detection per
transect pass, and sensitivity of model parameters in
the timeseries behavior matching process; (3) giving an
explanation of the behavior matching problem in the context
of optimization and the measurement operator H ; and (4)
extending the details on the case study setup and choice of
flights for behavior matching.

5 Future Efforts

Future research into making the digital twin (DT) smart
is desirable as well as getting the digital twin to L3
(allows for real-time updates between the physical system
and DT as well as utilize machine learning operators)
and L4 (DT model utilizes adaptive techniques such as
reinforcement learning between the physical system and DT
for understanding system performance and features) [34].
For the DT to be smart it needs to have 5 characteristics
such as Cognizant (aware of capabilities and limitations),
Taskable (handle high-level, often vague, instructions),
Reflective (learn from experience to improve performance),
Ethical (adhere to a system of societal and legal norms),
Knowledge Rich (reason over a diverse body of knowledge)
[1]. Efforts in cloud computing can be leveraged with the
L3 and L4 DT’s to make the system smarter with tools such
as Microsoft Azure and Amazon Web Services.

Just like the controlled release scenario in an open
environment [30, 45] or in a real world scenario with
active well sites and obstructions [50–52] there is a
need to understand benchmarks for a given environment.
For example, a full scale experiment in Oklahoma City
such as Joint Urban 2003 test [9], where a sulfur hexa-
fluoride (SF6) gas was released from a known source with
several sensors located throughout the city. The resulting
experiment was coupled with high fidelity modeling, such
as FEM3MP [19], to explore source estimation techniques
[21]. However, the data sets are not readily available for
others to benchmark. Other test scenarios such as the Mock
Urban Setting Test (MUST) have been used in similar
explorations [33]. In both of these examples the sensors are
fixed and there is little to no public availability of the data
sets (i.e. only shared among participants). This presents a
need for a benchmark data set or framework (such as the
DT) to provide a scenario based environment to test source
term estimation techniques etc. In addition, open source data
archiving of the data set enables reproducibility within the
research field.

Single mobile sensor systems (e.g. sUAS with OPLS)
have inherent spatial-temporal issues that limit gas dis-
tribution mapping usage to certain (stable) atmospheric
stability classes, otherwise the accuracy can degrade and
uncertainty grow. Utilizing a grid of sensors will ultimately

improve the field reconstruction efforts, as it can better
separate the spatial-temporal effects and provide opportu-
nities for sensor location optimization [48]. A group of
mobile sensors can be implemented and controlled using
techniques such as Central Voronoi Tessellations [20]. Fur-
thermore, the desired sampling locations can potentially
take advantage of adaptive sparse sampling methods [39]
based on information metrics such as information entropy.
Data driven approaches, given rich sampling locations can
then be potentially applied (e.g. Dynamic Mode Decom-
position [43], Compressive Sensing [14]). Even machine
learning techniques may then be available such as shal-
low neural networks with sparse sampling [24] or physics
informed neural networks (PINN) [41]. PINN’s have been
used in similar problems such as semantic inpainting [54].
Utilizing the power of machine learning with physical con-
straints combined with adaptive spatial sampling techniques
could lead to more accurate reconstruction of flux planes,
perhaps providing better source estimation and localization
results overall.

Acknowledgements The authors would like to thank Jairo Viola for
his helpful discussions on digital twins. The authors also thank the
reviewers for helpful comments in improving this manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Smart and Autonomous Systems (2018). https://www.nsf.gov/
pubs/2018/nsf18557/nsf18557.htm

2. Digital twin: Helping machines tell their story (2020). https://
www.ibm.com/topics/what-is-a-digital-twin

3. Digitals twins (2020). https://www2.deloitte.com/us/en/insights/fo
cus/tech-trends/2020/digital-twin-applications-bridging-the-physi
cal-and-digital.html#endnote-10

4. Smart control engineering via digital twins (SCE via DT) (2020).
http://mechatronics.ucmerced.edu/digital-twin

5. What is a digital twin? (2020). https://www.mathworks.com/
discovery/digital-twin.html

6. What is a digital twin? (2020). https://www.ge.com/digital/blog/
what-digital-twin

7. Abdel-Rahman, A.A.: On the atmospheric dispersion and Gaus-
sian plume model. In: WWAI’08: Proceedings of the 2nd Inter-
national Conference on Waste Management, Water Pollution, Air
Pollution, Indoor Climate, pp. 31–39 (2008)

Page 13 of 15    1J Intell Robot Syst (2022) 105: 1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.nsf.gov/pubs/2018/nsf18557/nsf18557.htm
https://www.nsf.gov/pubs/2018/nsf18557/nsf18557.htm
https://www.ibm.com/topics/what-is-a-digital-twin
https://www.ibm.com/topics/what-is-a-digital-twin
https://www2.deloitte.com/us/en/insights/focus/tech-trends/2020/digital-twin-applications-bridging-the-physical-and-digital.html{#}endnote-10
https://www2.deloitte.com/us/en/insights/focus/tech-trends/2020/digital-twin-applications-bridging-the-physical-and-digital.html{#}endnote-10
https://www2.deloitte.com/us/en/insights/focus/tech-trends/2020/digital-twin-applications-bridging-the-physical-and-digital.html{#}endnote-10
http://mechatronics.ucmerced.edu/digital-twin
https://www.mathworks.com/discovery/digital-twin.html
https://www.mathworks.com/discovery/digital-twin.html
https://www.ge.com/digital/blog/what-digital-twin
https://www.ge.com/digital/blog/what-digital-twin


8. Allen, G., Hollingsworth, P., Kabbabe, K., Pitt, J.R., Mead, M.I.,
Illingworth, S., Roberts, G., Bourn, M., Shallcross, D.E., Percival,
C.J.: The development and trial of an unmanned aerial system for
the measurement of methane flux from landfill and greenhouse
gas emission hotspots. Waste Management (2018)

9. Allwine, K.J., Flaherty, J.E.: Joint Urban 2003: Study overview
and instrument locations. Tech. rep., Pacific Northwest National
Lab.(PNNL), Richland, WA (United States) (2006)

10. Arndt, C., Leytem, A., Hristov, A.N., Zavala-Araiza, D., Cativiela,
J., Conley, S., Daube, C., Faloona, I., Herndon, S.: Short-term
methane emissions from 2 dairy farms in California estimated
by different measurement techniques and US Environmental
Protection Agency inventory methodology: A case study. J. Dairy
Sci. 101(12), 11461–11479 (2018)

11. Asadi, S., Fan, H., Bennetts, V.H., Lilienthal, A.J.: Time-
dependent gas distribution modelling. Robot. Auton. Syst. 96,
157–170 (2017)

12. Babak, O., Deutsch, C.V.: Statistical approach to inverse distance
interpolation. Stoch. Env. Res. Risk A. 23(5), 543–553 (2009)

13. Baldocchi, D., Detto, M., Sonnentag, O., Verfaillie, J., Teh, Y.A.,
Silver, W., Kelly, N.M.: The challenges of measuring methane
fluxes and concentrations over a peatland pasture. Agr. Forest.
Meteorol. 153, 177–187 (2012)

14. Baraniuk, R.G.: Compressive sensing [lecture notes]. IEEE Signal
Process. Mag. 24(4), 118–121 (2007)

15. Barchyn, T.E., Hugenholtz, C.H., Myshak, S., Bauer, J.: A UAV-
based system for detecting natural gas leaks. Journal of Unmanned
Vehicle Systems 6(1), 18–30 (2017)

16. Boschert, S., Rosen, R.: Digital twin—the simulation aspect. In:
Mechatronic Futures, pp. 59–74. Springer (2016)

17. Briggs, G.A.: Plume rise: A critical survey. Tech. rep., Air
Resources Atmospheric Turbulence and Diffusion Lab., Oak
Ridge Tenn (1969)

18. Burgués, J., Marco, S.: Environmental chemical sensing using
small drones: A review. Science of The Total Environment,
pp 141172 (2020)

19. Chan, S.T., Leach, M.J.: A validation of FEM3MP with joint urban
2003 data. J. Appl. Meteorol. Climatol. 46(12), 2127–2146 (2007)

20. Chen, Y.Q., Wang, Z., Liang, J.: Automatic dynamic flocking in
mobile actuator sensor networks by central voronoi tessellations.
In: IEEE International Conference Mechatronics and Automation,
2005, Vol. 3, pp. 1630–1635. IEEE (2005)
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