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Abstract
Aiming at satisfying the increasing demand of family service robots for housework, this paper proposes a robot visual servoing
scheme based on the randomized trees to complete the visual servoing task of unknown objects in natural scenes. Here,
“unknown” means that there is no prior information on object models, such as template or database of the object. Firstly, an
object to be manipulated is randomly selected by user prior to the visual servoing task execution. Then, the raw image informa-
tion about the object can be obtained and used to train a randomized tree classifier online. Secondly, the current image features
can be computed using the well-trained classifier. Finally, the visual controller can be designed according to the error of image
feature, which is defined as the difference between the desired image features and current image features. Five visual positioning
of unknown objects experiments, including 2D rigid object and 3D non-rigid object, are conducted on a MOTOMAN-SV3X six
degree-of-freedom (DOF) manipulator robot. Experimental results show that the proposed scheme can effectively position an
unknown object in complex natural scenes, such as occlusion and illumination changes. Furthermore, the developed robot visual
servoing scheme has an excellent positioning accuracy within 0.05 mm positioning error.

Keywords Robot visual servoing . Natural scenes . Randomized tree classifier . Unknown objects

and accurate positioning becomes a more challenging prob-
lem. This “unknown” means that no assumption is made on
the scene structure surrounding the object and no template or
database of the object is known to the robot prior to the task
execution.

With the new development of science and technology, many
researchers have proposed many robot visual servoing methods
that can be applied to unknown objects in natural scenes [9–11].
For example, an adaptive visual servoing method based on con-
tour features is proposed in [12], which can be used to recognize
and obtain the current position information of the object by learn-
ing the contour feature of the object and complete the robot visual
servoing task for unknown object. The visual serving method
does not require any prior knowledge about the position of the
object. However, it does not consider the non-rigid shape change
of the object in the visual servoing process. As a result, these
methods are only for the visual servoing of rigid bodies, and not
applied to the visual servoing of non-rigid bodies.

Visual servoing for non-rigid bodies has always been a
difficult and challenging problem because it is difficult to
estimate the deformation properties of non-rigid bodies. The
research on non-rigid body visual servoing mainly focuses on
the representation of the target model. Traditionally, the prob-
lem of representing the target model is tackled by establishing
its model and estimating its parameters [13–17]. However,

https://doi.org/10.1007/s10846-021-01516-w

/ Published online: 21 December 2021

Journal of Intelligent & Robotic Systems (2022) 104: 10

1 Introduction

Accurate positioning of objects is the crux to real-world ap-
plications of family service robots. Obviously, the basic func-
tion of service robots is that it can operate, grasp and move a
specific object selected by the user freely. The first step to
implement the above task is to make a robot positioning an
object with high accuracy and strong robustness. At present,
most visual servoing approaches, which have been widely and
successfully used for applications where the object to be ma-
nipulated is known beforehand [1–4] or the scene is known
beforehand [5]. Unlike industrial robots, family service robots
usually work in highly unstructured environments [6, 7], and
need more intelligence than industrial robots to perform given

tasks [8]. In this environment, the object may be "unknown",
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these methods need to acquire prior knowledge of the proper-
ties of these non-rigid bodies in advance. As a result, they are
unable to handle unknown objects.

In view of the complexity of non-rigid body model es-
tablishment, some researchers have recently proposed
methods based on model-free approaches [18–23]. The
main idea of these methods is representing the target
through artificial marking, which simplifies the extraction
of image feature. However, these methods are labor inten-
sive and not efficient. With the development of deep learn-
ing approaches, some researchers have proposed to use
deep learning algorithms [19, 20] to identify the category
information of unknown objects and obtain the best grasp-
ing position of the object. However, these methods need to
obtain the prior knowledge of the category information of
each unknown object by off-line learning, and do not con-
sider the problem of robot visual servoing control of un-
known objects in complex natural scenes (such as occlu-
sion and illumination changes). As a result, these methods
fail to apply for natural scenes.

In this work, we propose a robot visual servoing scheme
based on the randomized trees with an effort for avoiding
above-mentioned shortcomings. The main objective and fea-
ture of the proposed approach are to complete the visual
servoing task of unknown objects in various complex natural
scenes towards more practical solutions and applications. As
opposed to prior work which uses prior knowledge of objects
to establish their model [13–17], the proposed method in this
work does not need any prior information on object models,
such as template or database of the object. User can randomly
select an object to be manipulated prior to the visual servoing
task execution. Furthermore, inspired and improved from
some deep learning algorithms [19, 20], the proposed method
can perform well in complex natural scenes (such as occlusion
and illumination changes), which is common in manipulation
domains.

The main contributions and novelty of this work can be
outlined as follows:

& A visual servoing method based on the randomized trees
for unknown objects in natural scenes is proposed. It does
not need to acquire any knowledge of the object template
and its natural scene in advance, and there are always
many objects on the robot operating platform during the
positioning process. “Unknown Objects” are randomly
specified according to the needs of users, then before the
robot servoing task starts, the required data only can be
acquired on-line for the specified object, that is, the prior
knowledge of the geometric model of the object is not
needed in advance.

& The proposed scheme has been tested and evaluated on a
real MOTOMAN-SV3X six degree-of-freedom (6-DOF)
manipulator robot. Experimental results show that the

developed scheme can effectively position an unknown
rigid object or non-rigid object in many challenging nature
scenes with occlusion and illumination changes and with a
high positioning accuracy.

The remainder of this paper is organized as follows. After
discussing related work in Section 2, a brief description on the
system structure is given in Section 3. The specific implemen-
tation of the three main parts of the system, including the
construction of the randomized tree classifier, the computation
of the current image features, and the design of the visual
controller, is described in detail in Section 4. Detailed exper-
imental results and analyses are provided in Section 5. Finally,
summary and future works are presented in Section 6.

2 Related Work

Research on the visual servoing of objects (including rigid
bodies and non-rigid bodies) can be roughly classified into
model-based methods and model-free methods. In model-
based methods, the core of these methods is to build the model
of the object and estimate its parameters [11, 13–17, 24, 25].
Gratal et al. [11] propose a virtual visual servoing based on
saliency map to achieve the visual servoing of unknown ob-
jects in natural scenes. Using the approaches in [25, 26], a
robot can pick up or place a random object on the desktop,
but it cannot operate on a specified object and can only re-
move all objects one by one on the desktop, which would
possibly make the ornament to be cleaned up mistakenly.
Jadav et al. [15] used a comprehensive dynamic equation to
express the movement of the system to manipulate the de-
formed object, and then used multiple manipulators (or a claw
with multiple fingers) to change the shape of the deformed
object. The movement of each manipulator proposes an opti-
mization scheme. This paper verifies the effectiveness of the
proposed method through two sets of simulation experiments.
However, this method heavily relies on model establishment
and parameter estimation for non-rigid body, so it is not suit-
able for unknown objects.

In model-free methods, the key is the representation of
targets. Classical methods represent objects through artificial
marking [18–23]. Using the approach in [18], a robot can
complete the task of picking up and placing the unknown
object bymarking the grasping position of the specified object
in advance. But the approach is very difficult to apply to
realistic unknown natural environments in the family services.
Newer methods address the challenge by using deep learning
algorithms. A deep learning algorithm [19, 20] is used to
recognize the category information of unknown objects and
obtain the optimal grasping position of the objects. The ap-
proach does not need to obtain the geometric model informa-
tion of the object prior to the visual servoing task execution.
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However, the approach needs to acquire the prior knowledge
of the category information of each unknown object by off-
line learning, and does not consider the problem of the robot
visual servoing control for the unknown object in complex
natural scenes (e.g. occlusion and illumination changes).

In this work, to solve the problems of model-based
methods and model-free methods, we propose a robot visual
servoing scheme under unknown objects in various complex
natural scenes. Experimental results show that the proposed
scheme can effectively position an unknown object in com-
plex natural scenes with strong robustness to occlusion and
illumination variations and small positioning error within
0.05 mm. It is showed that the proposed novel visual servoing
scheme can further improve flexible operations of the visual
servoing.

3 Problem Description and Overview
of System Structure

Robot visual servoing is intended to control the relative pose
of robot and object using the visual information. It can allow
the robot to work in dynamic and uncontrolled environments
[26]. There are two kinds of robot visual servoing structures,
including position-based visual servoing (PBVS) and image-
based visual servoing (IBVS). This paper adopts the imaged-
based visual servoing structure and eye-in-hand configuration.
In this configuration, the camera is mounted on the robot end-
effector so that it could be moved along with the robot. The
relative pose of the robot and object is represented as the
difference between the current image features and the desired
image feature, then the task of robot visual servoing can be
defined as minimizing the relative pose of the robot and ob-
ject. In other words, under this eye-in-hand configuration and
visual servoing structure, both robot visual positioning and
visual tracking can be viewed as a positioning problem in an
image feature space. Therefore, how to detect an object in
complex scenes, to calculate the feature of object in the current
image, and to design visual controller are three key issues for
achieving a robot visual servoing mission in natural scenes.

To solve the above problems, this paper proposes a robot
visual servoing scheme based on the randomized tree classifi-
er in natural scenes. The overall structure of the proposed
scheme is shown in Fig. 1. The system mainly includes three
parts as follows: building a randomized tree classifier, com-
puting the current image feature, and designing the visual
controller. The basic idea of the algorithm is: Firstly, user
randomly selects an object to be manipulated prior to the vi-
sual servoing task execution. Then, the raw image about the
object can be captured by the camera and used to generate a
number of sample data sets for building the randomized tree
classifier. Secondly, the current image features, which are rep-
resented as 2D pixel coordinates of the object image centroid,

can be computed using the previously built classifier. Finally,
visual control input can be calculated according to the image
feature error and is applied to the robot to achieve the robot
visual positioning for unknown objects. In Fig. 1, fd represents
the desired image features and f denotes the current image
features (as shown by the red circle).

The basic principle of the three main parts of the servoing
system will be stated individually in detail in next section.

4 Proposed Solution

In this section, detailed implementation of all functions
highlighted in Fig. 1 will be described according to the order
listed above, which includes the construction of the random-
ized tree classifier, the computation of the current image fea-
tures, and the design of the visual controller.

4.1 Construction of the Randomized Tree Classifier

The main function of this module is to construct a randomized
tree classifier for recognizing and detecting unknown objects
randomly selected by the user. The whole process is shown in
Fig. 2, which can be further divided into the following four
steps.

Step 1. Selecting the unknown object to be manipulated.
Firstly, the object selected randomly by the user will
be put on the training station whose background is
clean without any clutter, and the robot is also
moved to the training station. Then, the desired im-
age can be obtained through segmenting the current
image captured by the camera mounted on the ro-
bot’s end-effector. If the object is a 3D non-rigid
body, its rough 3D model can be obtained through
the ImageModeler software, and then the 3D object
image will be obtained using the above method.

Step 2. Preprocessing. The main purpose of the preprocess-
ing is to get the gray image of the desired image.

Step 3. Extracting the object features and generating the
view sets. The stable affine invariant features are
extracted on the preprocessed image. Then patches,
whose center is each feature point, are obtained.
These patches will form view sets of image feature
points of the object, or object view sets for short.

Step 4. Establishing the randomized tree classifier. A ran-
domized tree classifier can be built using these ob-
ject view sets.

The detailed implementation of feature extraction, object
view sets generation and randomized tree classifier establish-
ment are described as follows.
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4.1.1 Feature Extraction

Characteristics of image features used in the control loop,
especially for the visual servoing structure based on im-
ages, will directly affect the stability and robustness of a
robot visual servoing system, and this is one of the im-
portant factors for robotic systems to be successfully ap-
plied to complex environments. Therefore, this paper
adopts a two-level feature extraction method to obtain
affine invariant stable features. Firstly, LOG-FAST fea-
ture extraction method is used for rapidly extracting fea-
tures from the gray image of the raw object. The LOG
operator is utilized to conduct Gaussian filtering and im-
age sharpening processing so as to eliminate noises of the
image. Then FAST-9 operator is used to extract the fea-
ture in different scale spaces.

To further obtain affine invariant stable features, it is nec-
essary to conduct selection operation after the preliminary

extraction. The main steps to achieve above task can be stated
as follows:

Step 1. Generating M new images by conducting affine
transformation on the grayscale image. Affine trans-
formation is a combination between non-singular

linear transformation matrix A¼RθR−1
φ SRφ and

translation matrix t = [tx, ty]
T, where Rθ and Rφ

are the rotation matrices that correspond to θ and φ
respectively, and they are within the ranges of [‐π,
π]. S = diag {λ1, λ2} represents the image scaling
transformation matrix, and λ1, λ2 are within the
range of [0.2, 1.5]. Besides, tx, ty are within the range
of [0, 2].M new images are generated by randomly
selected parameters θ, φ, λ1, λ2, tx, ty, and white
noise is added into the generated M new images.

Step 2. Determining affine invariant stable features. Firstly,
LOG-FAST feature extraction method is adopted to

Camera
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e uDesired feature fd Robot

Compu�ng current feature

Current imageFeature
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centroid Current view set

fCurrent feature
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Fig. 1 Overall structure of the robot visual servoing system based on the randomized tree classifier
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Fig. 2 Process of constructing a randomized tree classifier
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extract the features on the M new images. Then, the
inverse transformation is utilized to recover the ex-
tracted feature. Finally, the successful matching fre-
quency between the recovered features and the fea-
tures of the original image is calculated. The features
with the top N frequency are considered as the “sta-
ble” features, which are illustrated with red circles in
Fig. 3.

These features construct a feature setK = {k1, k2, …, kN},
where 1 to N are ultimately determined stable features. Each
feature is tagged to denote a class, and the different classes are
indicated as C = {c1, c2, …, cN}. Then these stable features
are used to construct view sets to be employed for building the
randomized tree classifier.

4.1.2 Establishment of View Sets

When capturing a frame of new image in the robot visual
servoing process, the most critical problem is to determine
whether the current image involves the object and object’s
location is in the image. The first step for solving the above
problem is to detect the features on the object. So, the view set
of each feature needs to be further established after the stable
features are obtained. Feature patches are extracted on the M
affine transformed images, and the size of each patch is
32*32. The view sets consist of all the extracted feature
patches, and the size of view sets is M*N finally. All feature
patches with the same number will form a small collection,
thus for the N stable features, N small sets are constructed:
Vn = {vn1, vn2, ⋯, vnm}, 1 ≤ n ≤ N,where each Vn set
includes m elements, and it is the view set of a feature.
Figure 4 shows the view set of a certain feature, where
different elements indicate the different locations for the
same feature in different perspectives.

4.1.3 Establishment of Randomized Tree Classifier

Binary decision tree is adopted in this system, which
has only one root node and two child nodes. Each node
is divided into two child nodes and the other nodes
follow recursively until the bottom node has no branch.
The bottom node is named as leaf node. The view sets
are put into the root node, and patches of each view set
traverse from the root to the leaf. In the traversal, every
node will test the patch to determine whether this patch
belongs to a certain node. This system adopts a gray
image, thus the information gain of the gray information
feature is the largest. Gray information is selected as the
criterion of classification in this paper. The discriminant
of each node can be written as:

T ¼ left f I p;m1ð Þ−I p;m2ð Þð Þ≥τ
right otherwise

�
ð1Þ

where τ is the default threshold, I(p, m1)and I(p, m2)
represent the gray values of two pixels which are ran-
domly selected in the patch p entering the tree. When
all randomly selected patches enter the randomized tree,
the number of each class’s patches entering the leaf
node m and the number of all patches entering the leaf
node M should be calculated. The ratio between m and
M is the posteriori probability that a certain feature is
identified as a certain class. If the number of the ith
feature class’s patches entering the leaf node is mi and
the number of all the patches entering the leaf node is
M, then the posterior probability that the ith feature is
identified as the ith feature class can be represented as:

Pη l;pð Þ Y pð Þ ¼ cð Þ ¼ mi

M
ð2Þ

where η represents the leaf node. The leaf node stores
the posterior probability Pη(l, p)(Y(p) = c) of each class.

In general, as the size of the sample set is large, it is
difficult to guarantee a high accuracy result using one
randomized tree classifier. Statistically speaking, more
randomized tree classifiers can compensate this short-
coming. Therefore, the method of establishing more
trees to speed up the process of the object detection is
adopted. The next step is to use the built randomized
tree classifier to detect objects and to compute the cur-
rent image features on the current image captured by
the camera in the natural scenes in real time.

4.2 Computing the Current Image Feature

The main function of this module is to detect the object in
the current image and to compute the features of the cur-
rent image. The whole process can be shown in Fig. 5.Fig. 3 Extracted stable features
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After a randomized tree classifier is established, one can
obtain the posterior probability distributions of all classes
of the features entering the leaves eventually P(Y(X) =
C|T = Ti, leaf η) and the object view sets. When the
current frame image comes during the process of the robot
visual servoing, firstly one can extract features on the
current frame image, and then select the neighborhood
patches with a size of 32*32 for each feature. All obtained
patches are used to establish the current view sets and

enter the different randomized tree. Let bY pð Þ be the esti-
mated features label corresponding to the small patch p.

Thus, bY pð Þ can be considered by Eq. (3):

Ŷ pð Þ ¼ argcmaxpc pð Þ ¼ argc max
1

L
∑

l¼1⋯L
Pη l;pð Þ Y pð Þ ¼ cð Þ

� �
> Dc

ð3Þ
where Pη(l, p) represents the posterior probability of the
patch p entering the leaves nodes of the lth tree Tl, c is the
feature class, pc(p) is the mean posterior probability of the
class c and Dc is the default threshold (60% used in the
later experiment). When the posterior probability is larger

than Dc, the feature of this patch is classified as class c,
and further, the center of this patch matches the feature of
the class c in the desired image. Otherwise the patch be-
longs to the background or a misclassification and should
be discarded. Thus, the match between the current fea-
tures and the cth class features is implemented.

When the number of matching reaches a certain thresh-
old, it is determined that the current image contains the
object. In order to calculate the current image feature, the
RANSAC algorithm is used to estimate the homograph
matrix H. Then H is used to calculate the centroid coordi-
nate of the object, which is the current image features. In
Fig. 5, the centroid of an object image is represented by a
red circle as shown in the picture named “current feature”.

4.3 Design of the Visual Controller

After obtaining the current image features, one can further
design the visual controller according to the image error to
drive the robot for positioning an unknown object in natural
scenes.

Fig. 4 View set of a certain
feature

Fig. 5 Process of computing the current image features
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The image error e can be defined as:

e¼ fd− f ð4Þ

where fd and f are the desired image features and current
image features, respectively.

For an image-based visual servoing structure used in the
paper, image Jacobian matrixJim, as shown in Eq. (5), is often
used to describe the relationship between the changes of the

features in the image space ḟ and spatial velocity of the robot

end-effector in the robot workspace ṙ.

ḟ¼Jim ṙ ð5Þ

where ṙ is spatial velocity of the robot end-effector, includ-

ing linear velocity and angular velocity. In other words, ṙ
is the calculated visual control input u to be applied to the

robot end-effector; ḟ can be viewed as the image feature
error e.

Then, a simple visual control law u based on the inverse
Jacobian matrix can be designed as shown in Eq. (6).

u¼ υ
ω

� �
¼KpJim

þe ð6Þ

where [υT ωT]T is the camera’s (or robot’s) velocity, and
Jim

+is the pseudo inverse of image Jacobian matrix, and Kp

is the proportional control gain. The Laypunov function is
defined as V = 1/2eTe, V > 0. Then, the derivation of the

Laypunov function V̇ can be described as:

V̇ ¼ eTė¼eT ḟd− ḟ
� �

ð7Þ

For eye-in-hand configuration used in the paper, camera is
mounted on the robot end-effector and it moves along with the
robot. So, in this camera-robot configuration, both robot visu-
al positioning and visual tracking are considered as the posi-

tioning problem in the image features space. Therefore, ḟ d¼0.
Then,

V̇ ¼eTė¼eT ḟd− ḟ
� �

¼−eT ḟ¼−eT Jimṙ¼−eT Jimu

¼−eT JimKpJ
þ
ime¼−eTKpe

ð8Þ

For robot visual control input in any ith directionui, it can

easily prove that the Laypunov function satisfies V̇ i < 0 by
using Eq. (8). Therefore, the closed-loop system is asymptot-
ically stable according to the Lyapunov stability theory, and
the robot can be controlled to move to the desired image
features.

5 Experimental Results

Five robot visual positioning experiments are conducted,
mainly including visual servoing of 2D rigid objects and
non-rigid objects in several natural scenes, to validate the per-
formance of the proposed robot visual servoing scheme for
unknown objects. Figure 6 shows the experimental platform
for robot visual servoing, which contains a CCD camera, a
MOTOMAN SV3 6-DOF manipulator robot and a personal
computer with Windows operating system and the OpenCV
2.4.1 software. The CCD camera is mounted on the robot
hand claw. It moves following with the motion of the robot
hand claw, while its internal and external parameters are un-
known. The image plane size is 1024*768 (unit: pixel), so the
desired image feature fd is the center of the image plane coor-
dinate (512, 384) (unit: pixel). In order to evaluate the perfor-
mance of the proposed robot visual servoing scheme in the
real world, two types of five robotic visual positioning exper-
iments were performed in the complex nature scenes, includ-
ing unknown rigid objects and unknown non-rigid objects.

The visual control law shown in Eq. (6) is used, and the
specific values of the relevant parameters are:Kp = diag
(0.04,0.04).

The maximum joint running speed of Motoman SV3 6-
DOF robot used in the experiment can reach 300o/s. In the
experiment, for the sake of safety, the running speed of the
robot is set at a low value of 10o/s. In Windows operating
system, average image capturing and processing time per
frame is about 0.156 s in the experiment, which can meet
the real-time control requirements of the arm robot at low
speed. The average processing time of the key components
(taking the initial frame images captured in experiment 5.1.1
as an example, the average processing time of the key com-
ponents for different initial frame images captured in each
visual servoing task is basically unchanged) is as follows:

Fig. 6 Experimental platform
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1). The processing time of the current image captured by the
camera is about 0.0783 s. The average time per frame
(per current image) captured by the camera is about
0.0160 s, and the average time of the feature extraction
and feature matching are about 0.0531 s and 0.0092 s,
respectively.

2). The sampling time of the controller is 1.35 s.

5.1 Robot Visual Servoing of 2D Rigid Objects in
Natural Scenes

The purpose of this experiment is to verify the performance of
the proposed approach for unknown 2D rigid objects in com-
plex nature scenes, including cases with no-occlusion, with
occlusion and with illumination change. The detailed results
are provided in Experiments 1–3.

5.1.1 Visual Positioning of the Unknown Object
without Occlusion

Visual positioning results are shown in Fig. 7. Fig. 7a illus-
trates the initial frame, where the center coordinate (512, 384)
of image plane is visualized by a red cross. Namely, it is the
desired image featurefd. The object is represented by a green
rectangular bounding box. The object centroid is visualized by
a blue circle and it represents the current image featuref(k) =
(u, v)T. The positioning results of middle frame and end frame
are illustrated in Fig. 7b and c, respectively.

5.1.2 Visual Positioning of the Unknown Object
with Occlusion

Visual positioning results are shown in Fig. 8. The positioning
results of middle frame and end frame are illustrated in Fig. 8b
and c, respectively. During the visual positioning, the object is
occluded by the black Mobile Hard Disk. The experimental
result shows that the robotic system still can detect the object
and finish the positioning in spite of the large occlusion.

5.1.3 Visual Positioning with Illumination Variations

The purpose of this experiment is to verify the availability of
the proposed approach under the scenarios containing overall
and local illumination variations. Visual positioning results
are shown in Fig. 9. Initial illumination is shown in Fig. 9a.
During the visual positioning, the case of turning off the light
in the robot workplace is shown in Fig. 9b, then add a beaming
light as shown in Fig. 9c, then remove a beaming light as
shown in Fig. 9d. Visual positioning results under the above
three illumination variations are illustrated in Fig. 9 b and 9d,
respectively. It can be seen from Fig. 9 that robot can success-
fully implement the visual servoing of unknown 2D objects in
natural scene in spite of large illumination variations.

5.2 Robot Visual Servoing of Non-rigid Objects in
Natural Scenes

In order to further verify the effectiveness of the proposed
approach for non-rigid objects in natural scenes, another two

(a) Initial frame

(b) Middle frame (c) End frame

Fig. 7 Visual positioning results
without occlusion (2D rigid
objects)
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groups of visual positioning experiments were performed, in-
cluding 2D non-rigid object and 3D non-rigid object. The
detailed results are provided in Experiments 4–5.

5.2.1 Visual Positioning of 2D Non-rigid Objects

The purpose of this experiment is to verify the effectiveness of
the proposed approach for 2D non-rigid objects in natural
scenes. A sponge is selected as a 2D non-rigid object. The

experiment is designed to simulate some practical applications
for service robots, such as folding the clothes and operating
the soft tissue in surgery and so on. During the visual posi-
tioning, the basic shape of the sponge has undergone tremen-
dous changes. The sponge is performed with up and down
mixture non-rigid deformation and visual positioning results
are shown in Fig. 10. At the very beginning of the servoing,
the sponge is squeezed up and its deformation is shown in
Fig. 10a. Then sponge is squeezed down and visual

(a) Initial frame

(b) Middle frame (c) End frame

Fig. 8 Visual positioning results
with occlusion (2D rigid objects)

(a) Initial frame (b) Middle frame 1: Turning off the light

(c) Middle frame 2: Adding a beaming light (d) End frame

Fig. 9 Visual positioning results
with huge illumination variation
(2D rigid objects)
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positioning result is shown in Fig. 10b. After Fig. 10b, the
sponge is folded up as shown in Fig. 10c until the end of visual
positioning process as shown in Fig. 10d. It can be seen from
Fig. 10 that the robot can still successfully implement the
visual positioning of the 2D non-rigid object.

5.2.2 Visual Positioning of 3D Non-rigid Objects

The purpose of this experiment is to verify the capability of
the proposed approach for 3D non-rigid objects. A plush toy is
selected as a 3D non-rigid object. As the plush toy has 3D

(a) Initial frame: squeeze up (b) Middle frame 1: squeeze down

(c) Middle frame 2: fold up (d) End frame

Fig. 10 Robot visual positioning
results with non-rigid
deformation (2D non-rigid object-
sponge)

(a) Initial frame (b) Middle frame 1: squeezing

(c) Middle frame 2: changing pose (d) End frame

Fig. 11 Robot visual positioning
results with large non-rigid
deformation and pose variation
(3D non-rigid object)
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(a) Positioning trajectory in image plane

(b) Positioning error curve in image plane

(c) Positioning trajectories in u and v directions

(d) Positioning error curves in u and v directions

(e) Control input curves in u and v directions

(f) Positioning trajectory in robot workspace
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Fig. 12 Robot visual positioning results of the unknown object
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characteristics, it is necessary to first build its rough 3Dmodel
by ImageModeler software using multiple views images
of the plush toy during the visual positioning. The plush
toy is then performed with certain non-rigid deformation
and its pose is also changed. Visual positioning results are
shown in Fig. 11. Initial pose and shape of the plush toy
is shown in Fig. 11a and plush toy does not have any
deformation. During the visual positioning, plush toy is
squeezed and visual positioning result is shown in
Fig. 11b. Then the pose of plush toy is changed and visual
positioning result is shown in Fig. 11c. Continuing to be
squeezed until the end of positioning as shown in
Fig. 11d, it can be seen from Fig. 11 that the robot can
still successfully implement the visual positioning of such
a 3D non-rigid object.

5.3 Further Analysis and Discussion

Positioning trajectory curves in the different directions and
different spaces can provide more insight into the visual
servoing behavior. During the visual positioning, pose of the
object can be changed freely. In this experiment, pose of the
object is changed at the late servoing when the robot is nearby
the desired position. Visual positioning results are shown
in Fig. 12. The positioning trajectory of object is shown in
Fig. 12a in the image plane u and v, and the positioning
trajectory of robot is shown in Fig. 12f in the robot
workspace x and y. Positioning error curves in the image
plane, u and v directions are shown in Fig. 12b, c and d,
respectively. It can be seen from Fig. 12 that the proposed
visual servoing scheme has a better convergence
performance.

Table 1 lists the mean, standard deviation (std) and max of
the robot positioning error in 10 different poses of the 2D
object without occlusion. The “max” represents the ratio be-
tween the max absolute of 10 times positioning error and the
motion range of this direction. The model of CCD camera
used in the experiment is MV-VS078FC-L, the image
resolution is 1024*768, and the corresponding pixel size
is 4.65μm*4.65 μm, that is, the physical size of each pixel
in x and y directions is 0.00465 mm. It can be seen from
Table 1 that the positioning error in x and y directions are
about 0.004 mm and 0.048 mm respectively and the

largest absolute relative error and standard deviation are
also very small. Therefore, the developed positioning sys-
tem has high accuracy with a positioning error within

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2x þ e2y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0042 þ 0:0482

p
¼ 0:05mm.

As showed in Table 1, the five positioning experimental
testing results show that the proposed approach of robot visual
servoing based on randomized tree classifier can implement
visual positioning of unknown objects in complex natural
scenes with occlusion and illumination variations.

6 Conclusion and Future Works

This paper proposes a robot visual servoing scheme to locate
the robot to unknown objects in natural scenes with family
services as application scenario. Five visual positioning exper-
iments for unknown rigid object and non-rigid object in var-
ious nature scenes are conducted on aMOTOMAN-SV3X six
degree-of-freedom manipulator robot. Experimental results
show that the proposed scheme can effectively position an
unknown object in complex natural scenes with strong robust-
ness to occlusion and illumination variations and small posi-
tioning error within 0.05 mm. Furthermore, the system does
not need any template nor any database of the object prior to
the visual servoing task execution. Once the object is
selected by the user freely, all the needed data can be
obtained online and the robot can complete the position-
ing task automatically.

However, current method cannot position the unknown
multiple objects at the same time. User can only specify one
object for visual servoing task before performing the visual
servoing task. If the current visual servoing task contains mul-
tiple targets, we have to reuse our method, which will become
more time-consuming. In other words, our method is only
suitable for the case where the number of targets is small
and is not suitable for the case where the number of targets
is too large.

As future works, the proposed robot visual servoing
scheme will be further extended into two aspects: 1) to posi-
tion the unknown multiple objects by combining multiple ob-
jects recognition and detection approaches [27, 28]; 2) to au-
tonomously grasp the unknown object by combining deep
reinforcement learning in view of its strong learning
capability.
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Table 1 Positioning error results of the object in 10 different poses
(without occlusion)

error mean/(mm) std/(mm) max/(mm)

x direction −0.0040 0.0880 1.3283%

y direction −0.0480 0.2189 1.8868%

10    Page 12 of 14 J Intell Robot Syst (2022) 104: 10



Open Access This article is licensed under a Creative Commons
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