Skip to main content
Log in

The nonequilibrium Green’s function picture of inelastic processes in nanostructure photovoltaics

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We discuss within the nonequilibrium Green’s function formalism the self-consistent Born approximation of the electronic self-energy for concurrent coupling of charge carriers to photons and phonons. The expansion of the charge carrier Green’s function is shown to provide a description for a range of physical processes with relevance for the photovoltaic device operation, such as indirect optical transitions, thermally assisted photocarrier escape from quantum wells or phonon-mediated interband transfer in tunnel junctions. The nonequilibrium Green’s function picture of these processes is reviewed with focus on the evolution of the system towards the steady state in the convergence of the self-consistency iteration process and on the impact of inelastic scattering on device operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Barnham, K., Duggan, G.: A new approach to high-efficiency multi-band-gap solar cells. J. Appl. Phys. 67, 3490–3493 (1990)

    Article  Google Scholar 

  2. Nozik, A.: Quantum dot solar cells. Physica E 14, 115–120 (2002)

    Article  Google Scholar 

  3. Aeberhard, U., Morf, R.H.: Microscopic nonequilibrium theory of quantum well solar cells. Phys. Rev. B 77, art. no. 125343 (2008)

  4. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  5. Datta, S.: Nanoscale device modelling: the Green’s function method. Superlattices Microstruct. 28, 253–278 (2000)

    Article  Google Scholar 

  6. Datta, S.: Quantum Transport. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  7. Luisier, M.: Atomistic simulation of transport phenomena in nanoelectronic devices. Chem. Soc. Rev. 43, 4357–4367 (2014)

    Article  Google Scholar 

  8. Aeberhard, U.: Theory and simulation of quantum photovoltaic devices based on the non-equilibrium GreenGs function formalism. J. Comput. Electron. 10, 394–413 (2011)

    Article  Google Scholar 

  9. Iotti, R.C., Ciancio, E., Rossi, F.: Quantum transport theory for semiconductor nanostructures: a density-matrix formulation. Phys. Rev. B 72(12), art. no. 125347 (2005)

  10. Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys. 67(7), 1033–1071 (2004)

    Article  Google Scholar 

  11. Querlioz, D., Saint-Martin, J., Bournel, A., Dollfus, P.: Wigner Monte Carlo simulation of phonon-induced electron decoherence in semiconductor nanodevices. Phys. Rev. B 78, art. no. 165306 (2008)

  12. Luisier, M.: Quantum transport beyond the effective mass approximation. Ph.D. Thesis, ETHZ (2007)

  13. Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62(3), 745–791 (1990)

    Article  Google Scholar 

  14. Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics. Benjamin, Reading (1962)

    MATH  Google Scholar 

  15. Keldysh, L.: Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20, 1018–1026 (1965)

    MathSciNet  Google Scholar 

  16. Schäfer, W., Wegener, M.: Semiconductor Optics and Transport Phenomena. Springer, Berlin (2002)

    Book  Google Scholar 

  17. Henneberger, K., Haug, H.: Nonlinear optics and transport in laser-excited semiconductors. Phys. Rev. B 38, 9759–9770 (1988)

    Article  Google Scholar 

  18. Pereira, M.F., Henneberger, K.: Microscopic theory for the influence of Coulomb correlations in the light-emission properties of semiconductor quantum wells. Phys. Rev. B 58, 2064–2076 (1998)

    Article  Google Scholar 

  19. Pereira, M.F., Henneberger, K.: Green’s function theory for semiconductor-quantum-well laser spectra. Phys. Rev. B 53, 16485–16496 (1996)

    Article  Google Scholar 

  20. Aeberhard, U.: Quantum-kinetic theory of steady-state photocurrent generation in thin films: coherent versus incoherent coupling. Phys. Rev. B 89, art. no. 115303 (2014)

  21. Mera, H., Lannoo, M., Li, C., Cavassilas, N., Bescond, M.: Inelastic scattering in nanoscale devices: one-shot current-conserving lowest-order approximation. Phys. Rev. B 86, art. no. 161404 (2012)

  22. Mera, H., Lannoo, M., Cavassilas, N., Bescond, M.: Nanoscale device modeling using a conserving analytic continuation technique. Phys. Rev. B 88, art. no. 075147 (2013)

  23. Aeberhard, U.: Photon Green’s functions for a consistent theory of absorption and emission in nanostructure-based solar cell devices. Opt. Quantum Electron. 46, 791–796 (2014)

    Article  Google Scholar 

  24. Luisier, M.: Atomistic modeling of anharmonic phonon–phonon scattering in nanowires. Phys. Rev. B 86, art. no. 245407 (2012)

  25. Langreth, D.: Linear and nonlinear response theory with applications. Linear Non-linear Electron Transp. Solids 17, 3–32 (1976)

    Google Scholar 

  26. Berbezier, A., Aeberhard, U.: Impact of nanostructure configuration on the photovoltaic performance of quantum-dot arrays. Phys. Rev. Appl. 4, art. no. 044008 (2015)

  27. Aeberhard, U.: Effective microscopic theory of quantum dot superlattice solar cells. Opt. Quantum Electron. 44, 133–140 (2012)

    Article  Google Scholar 

  28. Aeberhard, U., Vaxenburg, R., Lifshitz, E., Tomić, S.: Fluorescence of colloidal PbSe/PbS QDs in NIR luminescent solar concentrators. Phys. Chem. Chem. Phys. 14, 16223–16228 (2012)

    Article  Google Scholar 

  29. Aeberhard, U.: Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated optical transitions. Phys. Rev. B 84(3), art. no. 035454 (2011)

  30. Nelson, J., Paxman, M., Barnham, K.W.J., Roberts, J., Button, C.: Steady state carrier escape rates from single quantum wells. IEEE J. Quantum Electron. 29, 1460–1468 (1993)

    Article  Google Scholar 

  31. Aeberhard, U.: Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture. J. Photonics Energy 4(1), art. no. 042099 (2014)

  32. Wacker, A.: Semiconductor superlattices: a model system for nonlinear transport. Phys. Rep. 357, 1–111 (2002)

    Article  MATH  Google Scholar 

  33. Cavassilas, N., Michelini, F., Bescond, M.: Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells. Appl. Phys. Lett. 105(6), art. no. 063903 (2014)

  34. Aeberhard, U.: Theory and simulation of photogeneration and transport in Si-SiOx superlattice absorbers. Nanoscale Res. Lett. 6, art. no. 242 (2011)

  35. Aeberhard, U.: Theoretical investigation of direct and phonon-assisted tunneling currents in InAlGaAs/InGaAs bulk and quantum-well interband tunnel junctions for multijunction solar cells. Phys. Rev. B 87, art. no. 081302 (2013)

  36. Lumb, M.P., Yakes, M.K., González, M., Vurgaftman, I., Bailey, C.G., Hoheisel, R., Walters, R.J.: Double quantum-well tunnel junctions with high peak tunnel currents and low absorption for InP multi-junction solar cells. Appl. Phys. Lett. 100(21), art. no. 213907 (2012)

  37. Schenk, A.: An improved approach to the Shockley–Read–Hall recombination in inhomogeneous fields of space-charge regions. J. Appl. Phys. 71(7), 3339–3349 (1992)

    Article  Google Scholar 

  38. Aeberhard, U.: Quantum-kinetic theory of defect-mediated recombination in nanostructure-based photovoltaic devices. MRS Proc. 1493, 91–96 (2013)

    Article  Google Scholar 

  39. Lee, W., Jean, N., Sanvito, S.: Exploring the limits of the self-consistent Born approximation for inelastic electronic transport. Phys. Rev. B 79, art. no. 085120 (2009)

  40. Jülich Supercomputing Centre: JURECA: general-purpose supercomputer at Jülich Supercomputing Centre. J. Large Scale Res. Facil. 2, art. no. A62 (2016)

Download references

Acknowledgments

This project has received funding from the European Commission Horizon 2020 research and the innovation program under Grant Agreement No. 676629. The authors gratefully acknowledge the computing time granted on the supercomputer JURECA [40] at Jülich Supercomputing Centre (JSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Aeberhard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aeberhard, U. The nonequilibrium Green’s function picture of inelastic processes in nanostructure photovoltaics. J Comput Electron 15, 1219–1232 (2016). https://doi.org/10.1007/s10825-016-0877-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0877-3

Keywords

Navigation