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Abstract Botryococcus braunii Kützing, a green colonial
microalga, occurs worldwide in both freshwater and brackish
water environments. Despite considerable attention to B.
braunii as a potential source of renewable fuel, many eco-
physiological properties of this alga remain unknown. Here,
we examined the desiccation and temperature tolerances of
B. braunii using two newly isolated strains BOD-NG17 and
BOD-GJ2. Both strains survived through 6- and 8-month
desiccation treatments but not through a 12-month treatment.
Interestingly, the desiccation-treated cells of B. braunii
gained tolerance to extreme temperature shifts, i.e., high
temperature (40 °C) and freezing (−20 °C). Both strains
survived for at least 4 and 10 days at 40 and −20 °C, respec-
tively, while the untreated cells barely survived at these
temperatures. These traits would enable long-distance dis-
persal of B. braunii cells and may account for the worldwide
distribution of this algal species. Extracellular substances
such as polysaccharides and hydrocarbons seem to confer
the desiccation tolerance.
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Introduction

Botryococcus braunii Kützing (Trebouxiophyceae, Chloro-
phyta), a green colonial microalga, is a cosmopolitan species
that occurs worldwide in both freshwater and brackish water
environments and robustly produces hydrocarbons (Banerjee
et al. 2002). The hydrocarbon content of B. braunii colonies is
much higher than that of any other oil-producing microalga
and can reach up to 75 % of the dry weight (Chisti 2007).
Therefore, B. braunii has received considerable attention as a
potential source of renewable fuels. Recent studies have dras-
tically advanced our understanding of the biochemical, mo-
lecular biological, and applied aspects of this organism (Baba
et al. 2012; Demura et al. 2012; Ioki et al. 2012a, b, c, d;
Magota et al. 2012; Matsushima et al. 2012; Molnar et al.
2012; Niehaus et al. 2011; Ranga Rao et al. 2012; Shiho et al.
2012; Xu et al. 2011, 2012; Yonezawa et al. 2012). However,
several basic ecophysiological properties of this alga related to
its worldwide occurrence still remain unknown.

The desiccation tolerance of microalgae has been previ-
ously reported in terrestrial cyanobacteria (Cameron 1962;
Dodds et al. 1995; Sakamoto et al. 2009), desert green algae
(Gray et al. 2007), phototrophic biofilms algae (Häubner
et al. 2006; Rindi 2007; Gustavs et al. 2010), and alpine soil
algae (Karsten et al. 2010; Holzinger et al. 2011). Desert
biological soil crusts contain many unicellular green algae
belonging to three major classes, i.e., Chlorophyceae, Tre-
bouxiophyceae, and Charophyceae (Lewis and Flechtner
2002). Gustavs et al. (2010) found five trebouxiophytes in
aeroterrestrial biofilms. Trebouxiophycean algae have also
been detected in the air as “aeroalgae” (Handa et al. 2007).
Because most of these algae are distributed worldwide,
desiccation tolerance appears to be a key ecophysiolog-
ical trait pertaining to the dispersal of microalgal species
on a global scale.
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B. braunii is widely distributed in the freshwater environ-
ments of Europe, Africa, Asia, Australia, North America,
and South America (Aaronson et al. 1983). In Japan, B.
braunii is found over a wide geographical range across the
Japanese islands (unpublished data). Phylogenetic analysis
of 31 B. braunii strains collected from various localities in
Japan failed to detect any reliable correlation between phy-
logeny and localities, suggesting that B. braunii is dispersed
between ponds, presumably by wind or birds (Kawachi et al.
2012). However, desiccation tolerance of B. braunii is still
unknown. In this study, we demonstrate that B. braunii cells
could survive dehydrating conditions for over 6 months and
that desiccation-treated cells gained tolerance to extreme
temperatures.

Materials and methods

Botryococcus braunii colonies were isolated from fresh-
water bodies in the Okinawa Prefecture of Japan using a
micropipette. Two strains, BOD-NG17 and BOD-GJ2, were
established in a unialgal culture and a clonal state. The 18S
rDNA sequences of these strains, which we used for species
confirmation, were deposited in the GenBank/EMBL/DDBJ
database with following accession numbers: AB758446 and
AB758447 for BOD-NG17 and BOD-GJ2, respectively.
These strains were maintained in test tubes containing AF-6
medium (Kasai et al. 2004) at 22 °C under a 12-h light/12-h
dark cycle with white fluorescent illumination (approximately
100 μmol photons m−2 s−1).

Desiccation treatment B. braunii cultures (500 μL) were
transferred to a 1.5-mL plastic tube. Each tube contained ca.
2,500 colonies for both strains. The tube was placed with its
lid open in the growth chamber at 22 °C. The culture medium
evaporated within 2 weeks. The cell viability after 6-, 8-, and
12-month desiccation was examined using a growth test.

Histochemical staining of polysaccharides To stain polysac-
charides, 3 μL of a crystal violet solution (10 mg mL−1 in
methanol) was added to a 100-μL stationary-phase culture
(Tanoi et al. 2013). The stained cells were photographed
using a microscope equipped with a digital camera.

High temperature and freezing treatment After 2 weeks of
desiccation, the tubes containing the desiccation-treated or
untreated (control) cultures (500 μL containing ca. 2,500
colonies) were incubated at 40 or −20 °C in the dark for 1,
4, 10, and 20 days. Cell viability was then examined using
the growth test.

The growth test To examine cell survival after desiccation
treatment with or without subsequent exposure to an extreme

temperature, growth tests were performed using three
independent tubes for each measurement. Cells in each
tube were suspended in 1 mL AF-6 medium, and 30-μL
aliquots containing ca. 75 colonies each were then dis-
pensed into 32 wells of a 96-well plastic plate contain-
ing 100 μL each of AF-6 medium. After incubation for
1 month at 22 °C under a 12-h light/12-h dark cycle
with white fluorescent illumination (approximately
100 μmol photons m−2 s−1), each well was observed
for B. braunii growth under an inverted light micro-
scope. Wells showing more than a fivefold increase in
the colony number were counted as “wells with viable
B. braunii” and their percentage was calculated for each
tube. This method allowed us to compare culture via-
bility between the treatments because it was otherwise
difficult to estimate the cell viability due to the tightly
packed colonies of B. braunii.

Results

Desiccation tolerance Both BOD-NG17 and BOD-GJ2
remained viable under dehydrating conditions for at least
8 months. After 6 months of desiccation, the percentages of
wells with growing B. braunii cells reached 100 % in the
growth tests for both strains. After 8 months of desiccation,
the percentages decreased to 13.5±11.8 % (n=3) and 3.1±
2.1 % (n=3) for BOD-NG17 and BOD-GJ2, respectively.
For both strains, no growth of the rehydrated cells was
detected after 12 months of desiccation (Fig. 1).
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Fig. 1 Tolerance of B. braunii to long-term desiccation. Bar = S.D.
(n=3)
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Extracellular polysaccharide arrays Histochemical staining
of polysaccharides in BOD-NG17 and BOD-GJ2 revealed
that the cells of both strains are surrounded by radially
oriented arrays of polysaccharides. BOD-GJ2 exhibited
sparser arrays than BOD-NG17 (Fig. 2).

Acquired tolerance of desiccation-treated cells to high tem-
perature and freezing Extreme temperatures damage B.

braunii cells. Incubation of nondesiccation-treated BOD-
NG17 or BOD-GJ2 cells at 40 °C for only 1 day completely
inhibited growth. Incubation of BOD-NG17 and BOD-
GJ2 at −20 °C for 10 and 4 days, respectively, resulted in
no growth recovery after thawing. However, B. braunii
desiccation-treated cells survived under these extreme tem-
peratures. Desiccation-treated cultures of both strains
remained viable at 40 °C for at least 4 days. After incubation
at 40 °C for 1 day, the percentages of wells with growing B.
braunii cells reached 100 and 47.9±21.5 % (n=3) in the
growth tests of desiccation-treated BOD-NG17 and BOD-
GJ2, respectively. The percentages decreased to 21.9±8.3 %
(n=3) and 8.3±2.8 % (n=3) after incubation of BOD-NG17
and BOD-GJ2, respectively, at 40 °C for 4 days. For both
strains, no growth was detected after incubation at 40 °C for
10 and 20 days. At −20 °C, desiccation-treated cultures of
both strains survived for at least 10 days but no longer than
20 days. For BOD-NG17, the percentage of wells with
growing B. braunii cells in the growth tests were 100 %,
100 %, 28.3±6.3 % (n=3), and 0 % following 1-, 4-, 10-, and
20-day incubation, respectively. For BOD-GJ2, the percent-
ages were 58.3±38.9 % (n=3), 6.3±2.1 % (n=3), 7.3±3.5 %
(n=3), and 0 % following 1-, 4-, 10-, and 20-day incubation
(Fig. 3).

Discussion

In this study, we determined the culture viability, rather than
the cell viability, after desiccation and extreme temperature
treatments because the tendency of B. braunii to form tightly
packed colonies made estimation of the cell viability
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Fig. 2 Visualization of extracellular polysaccharide arrays by crystal
violet staining. Polysaccharide arrays surrounding the colonies appear
purple. Whole colonies (a, b) and enlarged views (c, d) are shown for
BOD-NG17 (a, c) and BOD-GJ2 (b, d). Bars indicate 50 and 10 μm in
the upper and lower micrographs, respectively
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Fig. 3 Increased tolerance of
desiccation-treated cells of B.
braunii to high temperature and
freezing. Black and gray
columns indicate desiccation-
treated and untreated cells,
respectively. NG indicates no
detectable growth. Bar = S.D.
(n=3)

J Appl Phycol (2014) 26:49–53 51



difficult. Effects of different treatments were successfully
evaluated using a growth test that determined the culture
viability based on the percentage of wells containing grow-
ing B. braunii. Both BOD-NG17 and BOD-GJ2 exhibited
tolerance to desiccation for over 6 months. This is the first
report on desiccation tolerance of B. braunii.

The extensive extracellular matrices of B. braunii colo-
nies seemed to be associated with the desiccation tolerance.
In the present study, histochemical staining revealed that B.
braunii colonies are surrounded by radial arrays of poly-
saccharides. Extracellular polysaccharides protect algal cells
against desiccation by preventing cellular water loss
(Cameron 1962; Clegg 2001; Oren 2007; Sakamoto et al.
2009; Tamaru et al. 2005). The radial arrays of polysaccha-
rides were more abundant in BOD-NG17 than in BOD-GJ2.
Robustness of the polysaccharide arrays may be associated
with relatively high desiccation tolerance of BOD-NG17. In
addition, the extracellular matrix also retains a large quantity
of liquid hydrocarbons and a network of cross-linked hydro-
carbons, and each B. braunii cell is surrounded by a cup-
shaped “retaining wall” outside its cell wall (Weiss et al.
2012; Wolf 1983). The retaining walls and hydrocarbons
may guard the B. braunii cell from various stresses.

Cellular events associated with the desiccation tolerance of
B. braunii are presently ambiguous. Speculations include (a)
involvement of sugar alcohols (polyols) like sorbitol and
ribitol as in the case of aeroterrestrial trebouxiophytes such
as Stichococcus sp., Coccomyxa sp., Chlorella spp., and
Apatococcus lobatus (Chodat) J.B. Petersen (Gustavs et al.
2010). (b) Various saccharides, such as arabinose, galactose,
fucose, glucose, mannose, and deoxyhexoses, have been de-
tected from B. braunii (Banerjee et al. 2002; Metzger et al.
1990; Weiss et al. 2012) and they also might be involved in
anhydrobiosis. In Nostoc commune Vaucher, physiological
activities including trehalose accumulation change under des-
iccation (Fukuda et al. 2008; Tamaru et al. 2005; Sakamoto
et al. 2009; Reina-Bueno et al. 2012). (c) Flexibility of the cell
walls is critical for the desiccation tolerance of an
aeroterrestrial green alga Klebsormidium crenulatum (Kütz.)
Lokhorst (Holzinger et al. 2011) and similar mechanisms may
be in action inB. braunii. Physical characteristics ofB. braunii
cell walls need to be clarified.

The dehydrated cells of both BOD-NG17 and BOD-GJ2
gained tolerance to high (40 °C) and freezing (−20 °C) temper-
atures. However, the underlying mechanisms remain unclear. It
is possible that polyols are involved because they act not only
as osmolytes, but also as antioxidants, heat protectants, and
rapidly available respiratory substrates (Gustavs et al. 2010).

In conclusion, B. braunii is tolerant to desiccation and the
dehydrated cells gain tolerance to extreme temperatures. The
tolerance of B. braunii to desiccation and extreme tempera-
tures, which algal cells often encounter when carried by birds
or wind, enables its dispersal on a global scale.
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