Skip to main content
Log in

On Quantum Mechanics with a Magnetic Field on ℝn and on a Torus \(\mathbb{T}^{n}\), and Their Relation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We show in elementary terms the equivalence in a general gauge of a U(1)-gauge theory of a scalar charged particle on a torus \(\mathbb{T}^{n}=\mathbb{R}^{n}/\varLambda\) to the analogous theory on ℝn constrained by quasiperiodicity under translations in the lattice Λ. The latter theory provides a global description of the former: the quasiperiodic wavefunctions ψ defined on ℝn play the role of sections of the associated hermitean line bundle E on \(\mathbb{T}^{n}\), since also E admits a global description as a quotient. The components of the covariant derivatives corresponding to a constant (necessarily integral) magnetic field B=dA generate a Lie algebra g Q and together with the periodic functions the algebra of observables \(\mathcal {O}_{Q}\). The non-abelian part of g Q is a Heisenberg Lie algebra with the electric charge operator Q as the central generator; the corresponding Lie group G Q acts on the Hilbert space as the translation group up to phase factors. Also the space of sections of E is mapped into itself by gG Q . We identify the socalled magnetic translation group as a subgroup of the observables’ group Y Q . We determine the unitary irreducible representations of \(\mathcal{O}_{Q},Y_{Q}\) corresponding to integer charges and for each of them an associated orthonormal basis explicitly in configuration space. We also clarify how in the n=2m case a holomorphic structure and Theta functions arise on the associated complex torus.

These results apply equally well to the physics of charged scalar particles on ℝn and on \(\mathbb{T}^{n}\) in the presence of periodic magnetic field B and scalar potential. They are also necessary preliminary steps for the application to these theories of the deformation procedure induced by Drinfel’d twists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. As the holomorphic structure w.r.t. the complex variables z j=x j+ix m+j is not invariant under xgx for generic gGL(n), the choice Λ=2πn would be a loss of generality if n=2m and we were concerned with holomorphic line bundles on the complex m-torus \(\mathbb{T}^{n}=\mathbb{C}^{m}/\varLambda\). See also the end of Sect. 3.

  2. Actually it is not necessary to assume from the start that VU(1); assuming just that it is nonvanishing complex, VU(1) will follow from the reality of A a , see below.

  3. As \(V^{-1}(l +l',x)V(l,x+2\pi l') V(l',x)= e^{-iq4\pi^{2}l^{t}\beta^{A}l'}\), (3) amounts to q2πl t β A l′∈ℤ for all q∈ℤ and l,l′∈ℤn, i.e. to (9).

  4. In fact,

    The second equality holds because dB=0, the third by Stokes theorem, the fourth by the periodicity of A′,B, which makes the border integral vanish.

  5. For instance, imposing the conditions (2)–(3) for all q∈ℤ and only for l,l′ such that l 1=kh 1, \(l_{1}'=kh_{1}'\) (with some \(h_{1},h_{1}'\in\mathbb{Z}\)) would lead to 1b , b1∈ℤ i.e. ν 1b ,ν b1∈ℚ, and again to ν ab ∈ℤ for a,b>1. The corresponding ψ’s could be interpreted as k-component wavefunctions, i.e. sections of a \(\b{C}^{k}\)-vector bundle.

  6. Namely, for all \(c\in\mathcal{O}_{Q}\), \(\psi\in \mathcal{X}^{V}\), \(f\in\mathcal{X} \), gg Q g▷(cψf)=(gc)ψf+c(gψ)f+(gf).

  7. $$ e^Re^S=e^{R+S}e^{-\frac{1}{2}[R,S]},\quad\mbox{if } [R,S] \mbox{ commutes with } R,S. $$
    (17)
  8. Equation (46) is verified by direct inspection for (n,k)=(0,0), using the relation \(m_{2}f(x^{1},x^{2}) = e^{ix^{1}+i\frac{\pi}{\tilde{\nu}}\tilde{\alpha}_{2}} f (x^{1},x^{2} + \frac{\pi}{\tilde{\nu}} )\) [valid for all fC (ℝ)] and (45).

  9. The whole commutant (centralizer) \(\tilde{M}\) of G within Y is the subgroup

    $$\tilde{M}=M M',\qquad M' := \Biggl\{ \exp \Biggl[ih^0 + i\sum_{a=2r + 1}^np_a z^a \Biggr] \mid \bigl(h^0 , z^{2r + 1} ,\ldots, z^n\bigr)\in\mathbb{R}^{n - 2r + 1} \Biggr\} $$

    Equivalently, [m,U g]=0, i.e. [m,p a ]=0, for all \(m\in\tilde{M}\).

  10. The points xW j , x′∈W i such that u=P j x=P i x′ are related by x′=x+2πl, with some l∈ℤn. One has just to replace the arguments l,x of V in (2) resp. by \(P_{i}^{-1}(u)-P_{j}^{-1}(u)\), \(P_{j}^{-1}(u)\).

  11. The points xU k , x′∈W j , x″∈W i such that [x]=[x′]=u=P i x″=P j x′=P k x are related by x′=x+2πl′, x″=x′+2πl with some l,l′∈ℤn. One has to replace x,x+2πl′,l,l+l′ in (3) resp. by \(P_{k}^{-1}(u),P_{j}^{-1}(u), [P_{i}^{-1}(u)-P_{j}^{-1}(u) ]/2\pi, [P_{i}^{-1}(u)-P_{k}^{-1}(u) ]/2\pi\), and use the above definition of t ij .

  12. It must be \(\tilde{W}_{i}=W_{i}+ 2\pi l_{i}\) for some l i ∈ℤn, whence \(\tilde{\boldsymbol{\psi }}_{i}(u)=\psi [\tilde{P}_{i}^{-1}(u) ]=\psi[P_{i}^{-1}(u)+2\pi l_{i} ]=\) \(V [l_{i},P_{i}^{-1}(u) ]\psi[P_{i}^{-1}(u) ]= \tilde{U}_{i}(u)\boldsymbol{\psi}_{i}(u)\), where \(\tilde{U}_{i}(u):=V [l_{i},P_{i}^{-1}(u) ]\).

  13. As P(x+z)=T [z] uX j , then \(x+z=P_{j}^{-1} (T_{[z]} u )\), whereas \(x=P_{i}^{-1}(u)\in X_{i}\); replacing these formulae in (18) we obtain the second equality in (68). As a consistency check, it is straightforward to verify that the conditions \([g_{\tilde{z}}\psi]_{i}=t_{ij} [g_{\tilde{z}}\psi]_{j}\) are satisfied.

References

  1. Asch, J., Over, H., Seiler, R.: J. Geom. Phys. 13, 275 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Birkenhake, C., Lange, H.: Complex Abelian Varieties. Springer, Berlin (2004)

    MATH  Google Scholar 

  3. Brüning, J., Sunada, T.: On the spectrum of gauge-periodic elliptic operators. In: Méthodes semi-classiques, Nantes, 1991. Astérisque 210, vol. 2, pp. 65–74 (1992)

    Google Scholar 

  4. Drinfel’d, V.G.: Sov. Math. Dokl. 27, 68–71 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Drinfel’d, V.G.: Sov. Math. Dokl. 28, 667 (1983)

    MATH  Google Scholar 

  6. Fiore, G.: On twisted symmetries and quantum mechanics with a magnetic field on noncommutative tori. PoS(CNCFG2010)018

  7. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  8. Gotay, M.J.: On a full quantization of the torus. In: Antoine, J.P., et al. (eds.) Quantization, Coherent States, and Complex Structures, pp. 55–62. Plenum Press, New York (1995)

    Google Scholar 

  9. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  10. Gruber, M.J.: J. Geom. Phys. 34, 137–154 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Igusa, J.: Theta Functions. Die Grundlehren der Mathem. Wiss., vol. 194. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  12. Kastrup, H.A.: Phys. Rev. A 73, 052104 (2006). For a historical introduction see e.g. Chap. 1 in Kastrup, H. A., Fortschr. Phys. 51, 975–1134 (2003). (expanded version in arXiv:quant-ph/0307069), and references therein

    Article  MathSciNet  ADS  Google Scholar 

  13. Kirillov, A.A.: Geometric quantization. In: Arnol’d, V.I., Novikov, S.P. (eds.) Dynamical Systems IV: Symplectic Geometry and Its Applications. Encyclopaedia Math. Sci., vol. IV, pp. 137–172. Springer, New York (2001)

    Google Scholar 

  14. Kostant, B.: Quantization and unitary representations. I. Prequantization. In: Lecture Notes in Mathematics, vol. 170, pp. 87–208. Springer, Berlin (1970)

    Google Scholar 

  15. Louisell, W.H.: Phys. Lett. 7, 60 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  16. Mackey, G.W.: Mathematical Foundations of Quantum Mechanics. Benjamin, New York (1963)

    MATH  Google Scholar 

  17. Morariu, B., Polychronakos, A.P.: Nucl. Phys. B 610, 531–544 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Mumford, D.: Tata Lectures on Theta I. Birkhäuser, Boston (1983)

    MATH  Google Scholar 

  19. Polchinski, J.: String Theory: Superstring Theory and Beyond, vol. 2. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  20. Sunada, T.: Topology 28, 125–132 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tanimura, S.: Prog. Theor. Phys. 90, 271–292 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  22. Tanimura, S.: J. Math. Phys. 43, 5926–5948 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Tanimura, S.: J. Math. Phys. 44, 5042–5069 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Woodhouse, N.M.J.: Geometric Quantization, 2nd edn. Oxford Mathematical Monographs. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  25. Wu, T.T., Yang, C.N.: Phys. Rev. D 12, 3845–3857 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  26. Zak, J.: Phys. Rev. 134, 1602 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  27. Zak, J.: Phys. Rev. 134, A1607 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  28. Zak, J.: Phys. Rev. 139, A1159 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  29. Zak, J.: Phys. Rev. B 39, A1607 (1989)

    Article  MathSciNet  Google Scholar 

  30. Zak, J.: Phys. Rev. 168, 686–695 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank D. Franco, J. Gracia-Bondía, F. Lizzi, R. Marotta, F. Pezzella, R. Troise, P. Vitale for useful discussions. We acknowledge support by the “Progetto FARO: Algebre di Hopf, differenziali e di vertice in geometria, topologia e teorie di campo classiche e quantistiche” of the Universita’ di Napoli Federico II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Fiore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiore, G. On Quantum Mechanics with a Magnetic Field on ℝn and on a Torus \(\mathbb{T}^{n}\), and Their Relation. Int J Theor Phys 52, 877–896 (2013). https://doi.org/10.1007/s10773-012-1396-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-012-1396-z

Keywords

Navigation