Skip to main content
Log in

The bioavailability of colloidal and dissolved organic phosphorus to the alga Pseudokirchneriella subcapitata in relation to analytical phosphorus measurements

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The speciation of phosphorus (P) in freshwater affects its bioavailability. Analytical detection methods were compared for different colloidal and dissolved organic forms of phosphorus (P) in relation to the potential P bioavailability to Pseudokirchneriella subcapitata, determined with a 14 day growth response to P. Growth on these P-forms was referenced to supplies of inorganic P (Pi) as operational definition of the relative potential bioavailability. The bioavailability of ten organic P molecules ranged 1–70% of Pi while these forms were generally not detected by colorimetric method (CM, malachite green) or ion chromatography (IC). The bioavailability of P associated with Fe- and Al oxides ranged 55–85% of Pi and these forms were completely detected by CM and partially by IC. The bioavailability of total dissolved P in the environmental samples ranged 7–85% (mean 43%) of Pi. The P detected by IC underestimates bioavailable P while CM and total dissolved P (inductively coupled plasma, ICP) overestimate P bioavailability by, on average 44% (CM) or 57% (ICP) in the environmental samples. We conclude that CM is the best index among the three tested for predicting long-term availability of environmental dissolved P in which colloidal P contributes more importantly than organic P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaronson, S. & N. J. Patni, 1976. Role of surface and extracellular phosphatases in phosphorus requirement of Ochromonas. Limnology and Oceanography 21: 838–845.

    Article  CAS  Google Scholar 

  • Bentzen, E., W. D. Taylor & E. S. Millard, 1992. The importance of dissolved organic phosphorus to phosphorus uptake by limnetic plankton. Limnology and Oceanography 37: 217–231.

    Article  CAS  Google Scholar 

  • Björkman, K. & D. M. Karl, 1994. Bioavailability of inorganic and organic phosphorus compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Marine Ecology Progress Series 111: 265–273.

    Article  Google Scholar 

  • Björkman, K. M. & D. M. Karl, 2003. Bioavailability of dissolved organic phosphorus in the euphotic zone at station ALOHA, North Pacific Subtropical Gyre. Limnology and Oceanography 48: 1049–1057.

    Article  Google Scholar 

  • Boström, B., G. Persson & B. Broberg, 1988. Bioavailability of different phosphorus forms in fresh-water systems. Hydrobiologia 170: 133–155.

    Article  Google Scholar 

  • Bradford, M. E. & R. H. Peters, 1987. The relationship between chemically analyzed phosphorus fractions and bioavailable phosphorus. Limnology and Oceanography 32: 1124–1137.

    Article  CAS  Google Scholar 

  • Brown, E. J., R. F. Harris & J. F. Koonce, 1978. Kinetics of phosphate uptake by aquatic microorganisms: deviation from a simple Michaelis–Menten equation. Limnology and Oceanography 23: 26–34.

    Article  CAS  Google Scholar 

  • Buffle, J. & G. G. Leppard, 1995. Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environmental Science & Technology 29: 2169–2175.

    Article  CAS  Google Scholar 

  • Correll, D. L., 1998. The role of phosphorus in the eutrophication of receiving waters: a review. Journal of Environmental Quality 27: 261–266.

    Article  CAS  Google Scholar 

  • Correll, D. L., 1999. Phosphorus: a rate limiting nutrient in surface waters. Poultry Science 78: 674–682.

    PubMed  CAS  Google Scholar 

  • Cotner, J. B. & R. G. Wetzel, 1992. Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnology and Oceanography 37: 232–243.

    Article  CAS  Google Scholar 

  • Croft, M. T., A. D. Lawrence, E. Raux-Deery, M. J. Warren & A. G. Smith, 2005. Algae acquire vitamin B-12 through a symbiotic relationship with bacteria. Nature 438: 90–93.

    Article  PubMed  CAS  Google Scholar 

  • Currie, D. J. & J. Kalff, 1984. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in fresh-water. Limnology and Oceanography 29: 311–321.

    Article  CAS  Google Scholar 

  • Ekholm, P. & K. Krogerus, 1998. Bioavailability of phosphorus in purified municipal wastewaters. Water Research 32: 343–351.

    Article  CAS  Google Scholar 

  • Ekholm, P. & K. Krogerus, 2003. Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays. Hydrobiologia 492: 29–42.

    Article  CAS  Google Scholar 

  • Guillard, R. R. & C. J. Lorenzen, 1972. Yellow–green algae with chlorophyllide C. Journal of Phycology 8: 10–14.

    CAS  Google Scholar 

  • Hansell, D. A. & C. A. Carlson, 2002. Biogeochemistry of marine dissolved organic matter, 1st edn. Academic press, San Diego, CA.

  • Hens, M., 1999. Aqueous phase speciation of phosphorous in sandy soils. PhD thesis. Katholieke Universiteit Leuven, Belgium.

  • Hens, M. & R. Merckx, 2002. The role of colloidal particles in the speciation and analysis of “dissolved” phosphorus. Water Research 36: 1483–1492.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe, H. G., 2003. Phosphatase activity in the sea. Hydrobiologia 493: 187–200.

    Article  CAS  Google Scholar 

  • Huang, B. Q. & H. S. Hong, 1999. Alkaline phosphatase activity and utilization of dissolved organic phosphorus by algae in subtropical coastal waters. Marine Pollution Bulletin 39: 205–211.

    Article  CAS  Google Scholar 

  • Huang, B. Q., L. J. Ou, H. S. Hong, H. W. Luo & D. Z. Wang, 2005. Bioavailability of dissolved organic phosphorus compounds to typical harmful dinoflagellate Prorocentrum donghaiense Lu. Marine Pollution Bulletin 51: 838–844.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, J. J., W. D. Taylor & D. W. Schindler, 2000. Phosphate concentrations in lakes. Nature 406: 54–56.

    Article  PubMed  CAS  Google Scholar 

  • Jansson, M., 1988. Phosphate-uptake and utilization by bacteria and algae. Hydrobiologia 170: 177–189.

    Article  CAS  Google Scholar 

  • Kolowith, L. C., E. D. Ingall & R. Benner, 2001. Composition and cycling of marine organic phosphorus. Limnology and Oceanography 46: 309–320.

    Article  CAS  Google Scholar 

  • Labry, C., D. Delmas & A. Herbland, 2005. Phytoplankton and bacterial alkaline phosphatase activities in relation to phosphate and DOP availability within the Gironde plume waters (Bay of Biscay). Journal of Experimental Marine Biology and Ecology 318: 213–225.

    Article  CAS  Google Scholar 

  • Lee, G. F., R. A. Jones & R. West, 1980. Availability of phosphorus to phytoplankton and its implications for phosphorus management strategies. Ann Arbor Science Publishers, Michigan: 259–308.

  • Litchman, E. & B. L. V. Nguyen, 2008. Alkaline phosphatase activity as a function of internal phosphorus concentration in freshwater phytoplankton. Journal of Phycology 44: 1379–1383.

    Article  CAS  Google Scholar 

  • Masson, P., C. Morel, E. Martin, A. Oberson & D. Friesen, 2001. Comparison of soluble P in soil water extracts determined by ion chromatography, colorimetric, and inductively coupled plasma techniques in PPB range. Communications in Soil Science and Plant Analysis 32: 2241–2253.

    Article  CAS  Google Scholar 

  • Michel, K., C. Brinkmann, S. Hahn, W. Dott & A. Eisentraeger, 2004. Acute toxicity investigations of ester-based lubricants by using biotests with algae and bacteria. Environmental Toxicology 19: 445–448.

    Article  PubMed  CAS  Google Scholar 

  • Mindl, B., B. Sonntag, J. Pernthaler, J. Vrba, R. Psenner & T. Posch, 2005. Effects of phosphorus loading on interactions of algae and bacteria: reinvestigation of the ‘phytoplankton–bacteria paradox’ in a continuous cultivation system. Aquatic Microbial Ecology 38: 203–213.

    Article  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 26: 31–36.

    Article  Google Scholar 

  • Nedoma, J., J. Padisak & R. Koschel, 2003. Utilisation of 32P-labelled nucleotide- and non-nucleotide dissolved organic phosphorus by freshwater plankton. Advances in Limnology: 87–99.

  • Nishikawa, K., H. Machida, Y. Yamakoshi, R. Ohtomo, K. Saito, M. Saito & N. Tominaga, 2006. Polyphosphate metabolism in an acidophilic alga Chlamydomonas acidophila KT-1 (Chlorophyta) under phosphate stress. Plant Science (Amsterdam, Netherlands) 170: 307–313.

    CAS  Google Scholar 

  • OECD, 2006. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. OECD/OCDE.

  • OrmazaGonzalez, F. I. & P. J. Statham, 1996. A comparison of methods for the determination of dissolved and particulate phosphorus in natural waters. Water Research 30: 2739–2747.

    Article  Google Scholar 

  • Rengefors, K., K. C. Ruttenberg, C. L. Haupert, C. Taylor, B. L. Howes & D. M. Anderson, 2003. Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton. Limnology and Oceanography 48: 1167–1175.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. & P. S. Davies, 2001. Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biological Reviews 76: 27–64.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Calero, V. & M. T. Galceran, 2005. Ion chromatographic separations of phosphorus species: a review. Talanta 66: 376–410.

    Article  PubMed  CAS  Google Scholar 

  • Saadi, I., M. Borisover, R. Armon & Y. Laor, 2006. Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere 63: 530–539.

    Article  PubMed  CAS  Google Scholar 

  • Sadiq, I. M., S. Pakrashi, N. Chandrasekaran & A. Mukherjee, 2011. Studies on toxicity of aluminum oxide (Al(2)O(3)) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. Journal of Nanoparticle Research 13: 3287–3299.

    Article  CAS  Google Scholar 

  • Santner, J., E. smolders, F. Wenzel & F. Degryse, 2012. First observation of diffusion-limited plant root phosphorus uptake from nutrient solution. Plant, Cell and Environment 35: 1558–1566.

    Article  PubMed  CAS  Google Scholar 

  • Štrojsová, A. & J. Vrba, 2006. Phytoplankton extracellular phosphatases: investigation using the ELF (enzyme labelled fluorescence) technique. Polish Journal of Ecology 54: 715–723.

    Google Scholar 

  • Turner, B. L., E. Frossard & D. S. Baldwin, 2005. Organic phosphorus in the environment. CABI publishing, Wallingford.

    Book  Google Scholar 

  • Van Moorleghem, C., L. Six, F. Degryse, E. Smolders & R. Merckx, 2011. Effect of organic p forms and p present in inorganic colloids on the determination of dissolved P in environmental samples by the diffusive gradient in thin films technique, ion chromatography, and colorimetry. Analytical Chemistry 83: 5317–5323.

    Article  PubMed  Google Scholar 

  • Vanveldhoven, P. P. & G. P. Mannaerts, 1987. Inorganic and organic phosphate measurements in nanomolar range. Analytical Biochemistry 161: 45–48.

    Article  CAS  Google Scholar 

  • Zhang, A. D. & C. Oldham, 2001. The use of an ultrafiltration technique for measurement of orthophosphate in shallow wetlands. Science of the Total Environment 266: 159–167.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank K. Coorevits for the ICP analyses. This research was funded by KUL (project OT/08/020) and was supported by the IWT by a doctoral fellowship (project 81218) awarded to C. Van Moorleghem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoff Van Moorleghem.

Additional information

Handling editor: Judit Padisak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Moorleghem, C., De Schutter, N., Smolders, E. et al. The bioavailability of colloidal and dissolved organic phosphorus to the alga Pseudokirchneriella subcapitata in relation to analytical phosphorus measurements. Hydrobiologia 709, 41–53 (2013). https://doi.org/10.1007/s10750-013-1442-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1442-8

Keywords

Navigation