Skip to main content

Advertisement

Log in

From genetic structure to wetland conservation: a freshwater isopod Paramphisopus palustris (Phreatoicidea: Amphisopidae) from the Swan Coastal Plain, Western Australia

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The freshwater isopod Paramphisopus palustris is ubiquitous and abundant in the groundwater-fed wetlands of the Swan Coastal Plain around Perth, Western Australia. Taxonomically, an additional variety (P. palustris fairbridgei) and species (P. montanus) are recognized from geographically outlying localities. Here a 486 bp fragment of cytochrome c oxidase subunit I (COI) mtDNA was sequenced in 68 individuals from 23 localities in order to evaluate the accepted taxonomy, to examine the evolutionary history of the species, and to identify lineages to prioritize conservation of wetlands already substantially modified. MtDNA showed individual populations to be largely distinct and differentiated. The 41 unique haplotypes formed seven independent, geographically defined networks. Phylogenetic analysis retrieved corresponding subclades, with three well-supported larger clades occurring (1) north of the Swan River, (2) south of the Swan River, and (3) in an area further south. A clear pattern of isolation by distance was detected suggesting an ancient serial founder event, with the pattern possibly persisting in the face of limited gene flow through priority effects. The possibility of incipient speciation, the monophyly of the recognized subspecies and the paraphyly of P. palustris with respect to P. montanus, suggest that the current taxonomy is invalid and requires re-examination. Divergences suggest a mid- to early Pliocene divergence of the major clades, with early Pliocene divergences among subclades probably driven by documented intense arid periods. Lineages are present in wetlands in geologically younger environments suggesting in situ survival and persistence. Seven Evolutionarily Significant Units were identified for the conservation of Paramphisopus, two of which are not currently represented in conservation reserves. With increased water demand and the negative impact of surrounding land-use, the current study provides a first phylogeographic assessment of conservation priorities for wetlands of the Swan Coastal Plain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike, H., 1974. A new look at the statistical model identification. Institute of Electrical and Electronics Engineers Transactions on Automatic Control 19: 716–723.

    Article  Google Scholar 

  • Arnold, J. M., 1990. Perth Wetlands Resource Book (Bulletin 266). Environmental Protection Authority and the Water Authority of Western Australia, Perth.

    Google Scholar 

  • Balla, S. A. & J. A. Davis, 1993. Wetlands of the Swan Coastal Plain, Vol. 5. Managing Perth’s wetlands to conserve the aquatic fauna. Water Authority of Western Australia, Leederville, Perth.

    Google Scholar 

  • Bastian, L. V., 1996. Residual soil mineralogy and dune subdivision, Swan Coastal Plain, Western Australia. Australian Journal of Earth Sciences 43: 31–44.

    Article  CAS  Google Scholar 

  • Cavalcanti, M. J., 2005. MANTEL for Windows. Test for association between two symmetrical distance matrices with permutation iterations. Version 1.18. Departemento de Vertebrados, Museu Nacional do Rio de Janiero, Brazil.

    Google Scholar 

  • Cheal, F., J. A. Davis & J. E. Growns, 1993. Relationships between macroinvertebates and environmental variables. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 16–18.

  • Chessman, B. C., K. M. Trayler & J. A. Davis, 2002. Family- and species-level biotic indices for macroinvertebrates of wetlands on the Swan Coastal Plain, Western Australia. Marine and Freshwater Research 53: 919–930.

    Article  Google Scholar 

  • Churchill, D. M., 1959. Late Quaternary eustatic changes in the Swan River district. Journal of the Royal Society of Western Australia 41: 53–55.

    Google Scholar 

  • Clarke, J. D. A., 1994. Evolution of the Lefroy and Cowan Palaeodrainage channels, Western Australia. Australian Journal of Earth Sciences 41: 55–68.

    Article  Google Scholar 

  • Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.

    Article  PubMed  CAS  Google Scholar 

  • Davis, J. A., J. S. Bradley & J. E. Growns, 1993. General introduction. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 16–18.

  • Davis, J. A. & R. S. Rosich, 1993a. Conclusions and implications for management. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 221–230.

  • Davis, J. A. & R. S. Rosich, 1993b. Executive summary. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 7–15.

  • De Gelas, K. & de Meester L., 2005. Phylogeography of Daphnia magna in Europe. Molecular Ecology 14: 753–764.

    Article  PubMed  CAS  Google Scholar 

  • De Meester, L., A. Gómez, B. Okamura & K. Schwenk, 2002. The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologia 23: 121–135.

    Article  Google Scholar 

  • Dodson, J. R. & M. K. Macphail, 2004. Palynological evidence for aridity events and vegetation changes during the Middle Pliocene, a warm period in Southwestern Australia. Global and Planetary Change 41: 285–307.

    Article  Google Scholar 

  • Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.

    CAS  Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Excoffier, L., P. Smouse & J. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    PubMed  CAS  Google Scholar 

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    PubMed  CAS  Google Scholar 

  • Glauert, L., 1924. Contributions to the fauna of Western Australia, no. 4. A freshwater isopod Phreatoicus palustris. n. sp. Journal of the Royal Society of Western Australia 10: 49–57.

    Google Scholar 

  • Gómez, A., G. J. Adcock, D. H. Lunt & G. R. Carvalho, 2002. The interplay between colonization history and gene flow in passively dispersing zooplankton: microsatellite analysis of rotifer resting egg banks. Journal of Evolutionary Biology 15: 158–171.

    Article  Google Scholar 

  • Gouws, G., B. A. Stewart & S. R. Daniels, 2006. Phylogeographic structure of a freshwater crayfish (Decapoda: Parastacidae: Cherax preissii) in south-western Australia. Marine and Freshwater Research 57: 837–848.

    Article  CAS  Google Scholar 

  • Gouws, G., B. A. Stewart & C. A. Matthee, 2005. Lack of taxonomic differentiation in an apparently widespread freshwater isopod morphotype (Phreatoicidea: Mesamphisopidae: Mesamphisopus) from South Africa. Molecular Phylogenetics and Evolution 37: 289–305.

    Article  PubMed  CAS  Google Scholar 

  • Growns, J. E., J. A. Davis, F. Cheal & J. S. Bradley, 1993a. Classification of the wetlands using invertebrate data. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 88–156.

  • Growns, J. E., L. G. Schmidt & F. Cheal, 1993b. Site descriptions and general methods. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 19–28.

  • Hasegawa, M., K. Kishino & T. Yano, 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174.

    Article  PubMed  CAS  Google Scholar 

  • Hopper, S. D. & P. Gioia, 2004. The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology, Evolution and Systematics 35: 623–650.

    Article  Google Scholar 

  • Jarman, S. N., 2004. Amplicon: software for designing PCR primers on aligned DNA sequences. Bioinformatics 20: 1644–1645.

    Article  PubMed  CAS  Google Scholar 

  • Keable, S. J. & G. D. F. Wilson, 2006. New species of Pygolabis Wilson, 2003 (Isopoda, Tainisopidae, Crustacea) from Western Australia. Zootaxa 1116: 1–27.

    Google Scholar 

  • Ketmaier, V., R. Argano & A. Caccone, 2003. Phylogeography and molecular rates of subterranean aquatic stenasellid isopods with a peri-Tyrrhenian distribution. Molecular Ecology 12: 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the United States of America 78: 454–458.

    Article  PubMed  CAS  Google Scholar 

  • Knott, B. & S. A. Halse, 1999. Pilbarophreatoicus platyarthricus n.gen., n.sp. (Isopoda: Phreatoicidea: Amphisopididae) from the Pilbara region of Western Australia. Records of the Australian Museum 51: 33–42.

    Google Scholar 

  • Majer, K., 1979a. Wetlands of the Darling System: wetland reserves and their management. Bulletin No. 62. Department of Conservation and Environment, Lesmurdie, Western Australia.

  • Majer, K., 1979b. Wetlands of the Darling System: wetlands in conservation reserves and national parks. Bulletin No. 61. Department of Conservation and Environment, Lesmurdie, Western Australia.

  • Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research 27:209–220.

    PubMed  CAS  Google Scholar 

  • McGaughran, A., I. D. Hogg, M. I. Stevens, W. L. Chadderton & M. J. Winterbourn, 2006. Genetic divergence of three freshwater isopod species from southern New Zealand. Journal of Biogeography 33: 23–30.

    Article  Google Scholar 

  • Mitchell, D., K. Williams & A. Desmond, 2003. Swan Coastal Plain 2 (SWA2—Swan Coastal Plain subregion). In May, J. A. & N. L. McKenzie (eds), A Biodiversity Audit of Western Australia’s 53 Biogeographical Subregions in 2002. Department of Conservation and Land Management, Kensington, Perth, 606–623.

  • Moritz, C., 1995. Uses of molecular phylogenies for conservation. Philosophical Transactions of the Royal Society of London B 349: 113–118.

    Article  Google Scholar 

  • Moritz, C., 1999. Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130: 217–228.

    Article  Google Scholar 

  • Nicholls, G. E., 1924. Phreatoicus lintoni, a new species of freshwater isopod from south-western Australia. Journal of the Royal Society of Western Australia 10: 92–103.

    Google Scholar 

  • Nicholls, G. E., 1926. A description of two new genera and species of Phreatoicidea, with a discussion of the affinities of the members of this family. Journal of the Royal Society of Western Australia 12: 179–210.

    Google Scholar 

  • Nicholls, G. E., 1943. The Phreatoicoidea. Part I. The Amphisopidae. Papers and Proceedings of the Royal Society of Tasmania 1942: 1–145.

    Google Scholar 

  • Nicholls, G. E. & D. F. Milner, 1923. A new genus of fresh-water Isopoda, allied to Phreatoicus. Journal of the Royal Society of Western Australia 10: 23–34.

    Google Scholar 

  • Posada, D., 2004. Collapse: describing haplotypes from sequence alignments. Version 1.2. (http://darwin.uvigo.es).

  • Posada, D. & K. A. Crandall, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, S., O. Deshpande, C. C. Roseman, N. A. Rosenberg, M. W. Feldman & L. L. Cavalli-Sforza, 2005. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proceedings of the National Academy of Sciences of the United States of America 102: 15942–15947.

    Article  PubMed  CAS  Google Scholar 

  • Rivera, M. A. J., F. G. Howart, S. Taiti & G. K. Roderick, 2002. Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts? Molecular Phylogenetics and Evolution 25: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, L. G., J. E. Growns & F. Cheal, 1993. Other factors of environmental significance. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 214–220.

  • Schmidt, L. G. & R. S. Rosich, 1993. Phytoplankton community structure in relation to physical and chemical gradients. In Davis, J. A., R. S. Rosich, J. S. Bradley, J. E. Growns, L. G. Schmidt & F. Cheal (eds), Wetlands of the Swan Coastal Plain, Vol. 6. Wetland classification on the basis of water quality and invertebrate community data. Water Authority of Western Australia, Leederville, Perth, 157–170.

  • Semeniuk, V., 1997. Pleistocene coastal palaeogeography in southwestern Australia—carbonate and quartz sand sedimentation in cuspate forelands, barriers and ribbon shoreline deposits. Journal of Coastal Research 13: 468–489.

    Google Scholar 

  • Sheppard, E. M., 1927. Revision of the family Phreatoicidae (Crustacea), with a description of two new species. Proceedings of the Zoological Society of London 1927: 81–124.

    Google Scholar 

  • Swofford, D. L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Tamura, K., 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C content biases. Molecular Biology and Evolution 9: 678–687.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R., E. Routman & C. A. Phillips, 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140: 767–782.

    PubMed  CAS  Google Scholar 

  • Unmack, P. J., 2001. Biogeography of Australian freshwater fishes. Journal of Biogeography 28: 1053–1089.

    Article  Google Scholar 

  • Verovnik, R., B. Sket & P. Trontelj, 2004. Phylogeography of subterranean and surface populations of water lice Asellus aquaticus (Crustacea: Isopoda). Molecular Ecology 13: 1519–1532.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, P. S., D. A. Metzger & R. Higuchi, 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10: 506–513.

    PubMed  CAS  Google Scholar 

  • Wang, M. & A. Schreiber, 1999a. Population differentiation in the woodlouse Oniscus asellus in central Europe (Isopoda: Oniscoidea). Journal of Crustacean Biology 19: 301–312.

    Article  Google Scholar 

  • Wang, M. & A. Schreiber, 1999b. Population genetics of the woodlouse Porcellio scaber Latr. (Isopoda: Oniscoidea) in central Europe: passive dispersal and postglacial range expansion. Canadian Journal of Zoology 77: 1337–1347.

    Article  CAS  Google Scholar 

  • Wilson, G. D. F. & G. D. Edgecombe, 2003. The Triassic isopod Protamphisopus wianamattensis (Chilton) and comparison with extant taxa (Crustacea, Phreatoicidea). Journal of Paleontology 77: 454–470.

    Article  Google Scholar 

  • Wilson, G. D. F. & E. L. Ho, 1996. Crenoicus Nicholls, 1944 (Crustacea, Isopoda, Phreatoicidea): systematics and biology of a new species from New South Wales. Records of the Australian Museum 48: 7–32.

    Google Scholar 

  • Wilson, G. D. F. & S. J. Keable, 1999. A new genus of phreatoicidean isopod (Crustacea) from the north Kimberley region, Western Australia. Zoological Journal of the Linnean Society 126: 51–79.

    Article  Google Scholar 

  • Wilson, G. D. F. & S. J. Keable, 2002. New genera of Phreatoicidea (Crustacea: Isopoda) from Western Australia. Records of the Australian Museum 54: 41–70.

    Google Scholar 

  • Wright, S., 1943. Isolation by distance. Genetics 28: 114–138.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Australian Biological Resources Study (ABRS) Participatory Program Grants (203-032 and 204-010), provided by the Department of the Environment and Heritage. The senior author was supported by a South African National Research Foundation Postdoctoral Scholarship for Research Abroad (GUN 2062031) and hosted by both the School of Animal Biology and the Centre of Excellence in Natural Resource Management, The University of Western Australia. The authors thank Dennis and Leisha Davis, Rebecca Dobbs, Geraldine Janicke, Anna Price and Ben Puglisi for providing assistance in the field, laboratory or in the preparation of the manuscript. The authors are grateful for the comments, discussion and suggestions provided by the population genetics group of the School of Animal Biology. We thank the editor and two anonymous reviewers whose comments vastly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Gouws.

Additional information

Handling editor: C. Sturmbauer

Electronic supplementary material

Below are the electronic supplementary materials.

10750_2007_742_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouws, G., Stewart, B.A. From genetic structure to wetland conservation: a freshwater isopod Paramphisopus palustris (Phreatoicidea: Amphisopidae) from the Swan Coastal Plain, Western Australia. Hydrobiologia 589, 249–263 (2007). https://doi.org/10.1007/s10750-007-0742-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-0742-2

Keywords

Navigation