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Abstract Healthcare resource planners need to develop
policies that ensure optimal allocation of scarce healthcare
resources. This goal can be achieved by forecasting daily
resource requirements for a given admission policy. If re-
sources are limited, admission should be scheduled according
to the resource availability. Such resource availability or
demand can change with time. We here model patient flow
through the care system as a discrete time Markov chain. In
order to have a more realistic representation, a non-
homogeneous model is developed which incorporates time-
dependent covariates, namely a patient’s present age and the
present calendar year. The model presented in this paper can
be used for admission scheduling, resource requirement
forecasting and resource allocation, so as to satisfy the
demand or resource constraints or to meet the expansion or
contraction plans in a hospital and community based inte-
grated care system. Such a model can be used with both fixed
and variable numbers of admissions per day and should prove
to be a useful tool for care managers and policy makers who
require to make strategic management decisions. We also
describe an application of the model to an elderly care system,

using a historical dataset from the geriatric department of a
London hospital.
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1 Introduction

Admission scheduling [1, 2] and resource planning [3] are
fundamental problems which require complex strategies to
effectively manage care services ensuring optimum utiliza-
tion of scarce resources and efficient quality of service
delivery. Long waiting lists are considered to be symptom-
atic of an inefficient care system [4–6]. To avoid long
waiting lists, care professionals and policy makers are
required to estimate the resource requirements for a given
time in the future and to allocate the budget/ resources to
satisfy this demand [7]. Also if the resource availability is
limited and cannot meet an ever increasing demand, it is
necessary to estimate the number of admissions that can be
satisfied each day and schedule accordingly, from the waiting
list [8]. This will help the health care managers to optimally
exploit capacity and limit the size of the waiting list [7].

Neither admission scheduling nor resource requirements
forecasting are new problems and numerous models have
been proposed. Some of these [5, 9–13] are queueing
models, others [14–19] utilise simulation or population/
ratio based approaches which use average lengths of stay to
quantify the number of patients requiring care resources, for
example [20–24]. However, some of these methods, which
are mostly stochastic or simulation based, are computation-
ally very complex and require substantial data and logistics
[25]. Other simpler methods, on the other hand, do not
properly represent case mix [3] or local specificities [25]
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and thus require more sophisticated models [26]. In
addition, as suggested by [3, 27], other approaches are
inaccurate or misleading. Also previous models mainly
model patient flow in a department or hospital and do not
incorporate readmissions and care in the community.
Therefore they are not very suitable for admission sched-
uling and capacity planning in an integrated care system,
which includes both hospital and community care [28].

In our previous work [29] we have developed a continuous
time non-homogeneous Markov model for admission sched-
uling and resource forecasting by enumerating patient path-
ways. The limitation of this model is that it assumes a fixed
number of admissions per day, so it cannot be used in many
practical scenarios (such as a care system with expansion or
contraction plans). A variable number of admissions each day
can therefore prove to be a more realistic assumption with
correspondingly better solutions that ensure optimal resource
utilization. Also we might need to schedule a variable number
of admissions each day so as to allocate resources to satisfy
the fluctuating demand for care services [12, 30]. In this
paper, we present a discrete time Markov model for
admission scheduling and capacity planning. Based on our
initial homogeneous model, a novel, more realistic non-
homogeneous model is developed, incorporating time depen-
dent covariates (in this case the patient’s present age and the
present calendar year). This approach can effectively be used
for resource requirement forecasting and resource allocation
to satisfy the demand or resource constraints or to meet the
expansion or contraction plans. We can also use this new
model to compare different admission scheduling strategies
for a care system. Finally we illustrate use of the model by
applying it to a historical dataset of all male patients from a
geriatric department of a London hospital admitted during a
16 year period [31]. Throughout the paper we use mathe-
matical notation which is described in Appendix 2 (Table 5).

2 Background

2.1 Patient flow through the care system

An integrated care system is a system in which patient care
is provided in both hospital and the community. Patient
flow can be characterized by the rate of transition of a
patient from one phase to another in this care system. A
cohort analysis of patient flows through all phases in a care
system can help us to forecast the number of patients in
various phases at a given time in the future [32]. In most
cases patient flow depends on the patient pathways defined
for the care system. We assume that a care system has n
hospital phases, such as acute, treatment, rehabilitation, or
long stay and m community phases, such as dependent,
convalescent, or recovered. These partially observable
phases can be real such as various hospital or community
care units or conceptual, representing periods in hospital
and/or community care depending on the patient phase of
care or stage of the illness being treated [33, 34]. Figure 1 is
the schematic representation of patient flow through the
care system.

A patient pathway for such a system is defined as the
way a patient sequentially moves from one hospital phase
to the next and similarly one community phase to the next.
Patients can be discharged from any hospital phase to the
first community phase or the patient can die in any hospital
or community phase. Re-admission into the first hospital
phase is possible from any community phase. We can
therefore represent this care system by an n+m+1 state
discrete time Markov chain with death as an absorbing
state. The transition matrix Q for the absorbing Markov
chain can then be represented as follows [33, 35]:

Q={qij}=Transition rate (next transition is to phase j |
currently in phase i).
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Here li represents the rate of transition from hospital
phase i to hospital phase i+1. νi represents the rate of
transition from hospital phase i to the first community
phase and μi is the rate of transition from hospital phase i to
the absorbing phase death. Similarly αi is the rate of
transition from community phase i to community phase i+
1, γi is the rate of transition from community phase i to the
first hospital phase and βi is the rate of transition from
community phase i to death.

We assume that the duration t of a step is 1 day. Therefore,
the discrete time transition probability matrix can be defined
as P={pij}=Probability (next transition is to phase j | currently
in phase i), where P can be described as follows [35]:

P ¼ exp Qtð Þ ¼ exp Qð Þ: ð2Þ

3 Model description

3.1 The homogeneous model

In the previous section we have discussed how we can
model a care system as a discrete time absorbing Markov
chain, based on our continuous time representation. The
vector s0 represents the initial values of number of patients
in different phases of the system.

s0 ¼ s0;1; s0;2; s0;3; . . . ; s0;n; s0;nþ1; s0;nþ2; . . . ; s0;nþm; s0;nþmþ1

� �
:

The mean number of patients in each phase after k days
is given by vector sk, where:

sk ¼ s0*P
k :

We also define a cost vector c={ci}=daily cost of care in
phase i:

c ¼ c1; c2; c3; ::::; cnþm; 0ð Þ0

where cn+m+1=0 (there is no cost in the death phase).

3.2 The non-homogeneous model

Typically patient flow also depends on time dependent
covariates such as the patient’s age and the calendar year. In

order to have a more realistic model it is therefore
necessary to update parameter values with time [35]. The
transition rates li, μi, νi, αi, βi and γi have been previously
assumed to depend log-linearly on the time dependent
covariates χ=(χ1 χ2 … χn). The log-linear function here
takes the form:

exp s þ b
0
χ

� �
ð3Þ

where coefficient parameters σ and vector b are estimated
for each of the transition rates using maximum likelihood
estimation [33, 35].

In the model presented here we consider two time
dependent covariates: the patient’s present age and the
present calendar year. In order to have a more realistic
model, we update the covariates each day for each patient
currently in the system, recalculate the parameter values for
each patient separately and recompute the discrete time
transition probability matrix P.

The mean number of patients in each phase after k days
is then given by:

sk ¼ s0*
Yk
i¼1

PðiÞ ð4Þ

whereP(i) represents the value of transition matrix P on day i.
The estimated number of patients in the care system on

dayk is:

hk ¼
Xnþm

i¼1

sk;i ¼ sk* hþ eð Þ ð5Þ

where h is a column vector of (n+m+1) elements. Here the
first n elements (number of hospital phases) are 1 and the
remaining elements are 0, and e is a column vector of (n+m+
1) elements, with first n elements and last element equal to 0
and the remaining m elements (number of community
phases) are 1. The column vectors h and e are used to
separately estimate the expected number of patients in
hospital and community phases.

The expected number of patients in the hospital after k
days is:

hk
h ¼ sk*h: ð6Þ

HP1 HP2 HPn CP1 CP2 CPm

Death 

λ 1 Admission λ 2 λ n-1 

µ1 µ2 µn β1 2 ββ m 

vn α1 α α2 m-1 

νν 2 1 

γ γ1 2 

γ m 

Fig. 1 Patient flow in the care
system. Here HPi represents
hospital phase i and CPi repre-
sents community phase i
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The expected number of patients in the community after k
days is:

hk
c ¼ sk*e ð7Þ

and the expected total daily cost on day k is

Ωk ¼ sk*c: ð8Þ

Once the expected numbers of patients in different
phases of the system are known, we use these expressions
to calculate the optimum rate of admissions to satisfy the
given constraints and to estimate the resource requirements
based on the given admission schedule.

3.3 Incorporating admissions

For a more realistic model it is necessary to incorporate new
admissions into the system. We therefore develop our model
to include, in the first instance, a fixed number of admissions
each day and subsequently a variable number of admissions
(increasing or decreasing) each day are assumed.

3.3.1 Fixed number of admissions

For modelling a fixed number of admissions each day, we
first assume that initially there are no patients in the system
and on day 0 the first patient is admitted into the first
hospital phase. On each subsequent day, one new patient is
admitted into the first hospital phase. We will separately
estimate the distribution vector for each patient and sum all
these to estimate the patients’ distribution on a given day.
Here the individual age of each patient is considered. Thus
the vector of updated values of patients in different phases
after k days is given by:

sk ¼ s0*
Xk

j¼1

Yk�jþ1

i¼1

PðiÞ
j

 !
ð9Þ

where s0={1,0,0,0,…….,0,…0} representing the fact that
on day 0 the first patient is admitted into the first hospital
phase and P(i)

j is the transition probability matrix for patient
j on day i. Here sk represents the number of patients in
different phases after k days with 1 admission per day. If the
admission rate is a admissions per day, then the expected
number of patients in different phases after k days will be
a* sk.

3.3.2 Variable number of admissions

For a care system having a variable number of admissions
each day we assume that the rate of change in admission
rate (growth in service) is r. Here r can be a positive
(growth) or negative (contraction) real number. Therefore

the expected number of patients in different phases on dayk
will be:

sk ¼ xþ y ð10Þ

where x is the vector of expected number of patients after k
days with a fixed number of admissions each day and y is
the vector of the change in the expected number of patients
in each phase after k days due to the change in admission
rate. Therefore

y ¼ s0*
Xk

j¼1
r*jð Þ*

Yk�jþ1

i¼1

PðiÞ
j

 !

¼ r*s0*
Xk

j¼1
j*
Yk�jþ1

i¼1

PðiÞ
j

 ! !
: ð11Þ

Thus the patient distribution on dayk will be:

sk ¼ s0*
Xk

j¼1

Yk�jþ1

i¼1

PðiÞ
j

 !
þ r*

Xk

j¼1
j*
Yk�jþ1

i¼1

PðiÞ
j

 ! !( )
:

ð12Þ

So we can write:

sk ¼ xþ r*w: ð13Þ
where vector w represents the expected change in patient
distribution (number of patients in different phases) due to
unit change (1 patient per day) in admission rate. Similarly
we can have more complex functions for admission rate
comprising higher powers of w such as

sk ¼¼ xþ r1*w1 þ r2*w2 þ r3*w3 þ ::::::::þ rn*wn

where wm ¼
Xk

j¼1
jm*

Yk�jþ1

i¼1

PðiÞj

 !
:

ð14Þ

The results obtained in this sub-section can be used for
admission scheduling as discussed in the next sub-section.

3.4 Admission scheduling

Admission scheduling can be defined as designing an
admission policy to ensure optimum utilization of the future
available resources satisfying given constraints or meeting a
given target. Possible constraints can be availability based
on budgets, beds or other resources (such as nursing staff,
physicians, or specialists) at a given time in the future or the
total daily, monthly or yearly expenditure. We will consider
two scenarios of interest: first a new care system and
second a pre-existing care system.
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3.4.1 A new care system

In a new care system the first patient is admitted into hospital
phase 1 on day 0 (at t=0). Therefore for a new care system:

s0 ¼ 1; 0; 0; 0; . . . . . . :; 0; . . . 0f g:
We assume that the constraint is to satisfy the available

number of beds, so there will be only B(tgiven) beds
available at time tgiven.

Therefore the expected number of admissions allowed
each day can be calculated as:

Areq ¼
B tgiven
� �
hhtgiven

per day ð15Þ

where, htgiven is the expected number of patients in the care
system at time tgiven and is defined in (5).

If the constraint is the total number of beds available in a
hospital but the beds availability in the community is not
constrained, then the expected number of admissions is:

Areq ¼
C tgiven
� �
Ωtgiven

per day ð16Þ

where hhtgiven is the number of patients in hospital at time
tgiven and is defined in (6).

If the total daily cost of care is a constraint then the
expected number of admissions is:

Areq ¼
C tgiven
� �
Ωtgiven

per day ð17Þ

where C(tgiven) is the available daily budget (cost) at time
tgiven. Ωtgiven is the expected total daily cost at time tgiven and
is defined in (8).

Here it is important to note that we are required to define
the rate of change in admission rate (r) so as to calculate the
number of admissions allowed each day. For a system with
a fixed number of admissions each day, r=0. We can also
calculate the value of r if the resource constraints are
available for two different dates (t1 and t2) in the future. For
example if the total daily cost constraint is given for two
dates in the future, with C(t1) the cost at time t1 and C(t2)
the cost at time t2, from (8) and (13):

Ωt1¼ x1þr*w1ð Þ*c ð18Þ
and similarly

Ωt2¼ x2þr*w2ð Þ*c: ð19Þ
As the initial rates of admission should be the same,

using (17) we get:

C t1ð Þ
Ωt1

¼ C t2ð Þ
Ωt2

and this gives:

r ¼ C t1ð Þ* x2*cð Þð Þ � C t2ð Þ* x1*cð Þð Þ
C t2ð Þ* w1*cð Þð Þ � C t1ð Þ* w2*cð Þð Þ

� �
: ð20Þ

From (20) it is clear that the value of r will be negative
for a hospital with a contraction plan.

If we want to keep the total cost constant for a given
duration in the future (from t1 to t2):

C t1ð Þ ¼ C t2ð Þ ¼ CðtÞ;
so

r ¼ x2*cð Þ � x1*cð Þ
w1*cð Þ � w2*cð Þ

� �
: ð21Þ

Similarly, if the bed availability is given for two dates in
the future, B(t1) at time t1 and B(t2) at time t2, from (5) and
(13) we obtain:

ht1 ¼ x1 þ r*w1ð Þ* hþ eð Þ; ð22Þ

ht2 ¼ x2 þ r*w2ð Þ* hþ eð Þ ð23Þ
and the initial rates of admission should be the same. Using
(15) we obtain:

B t1ð Þ
ht1

¼ B t2ð Þ
ht2

;

therefore:

r ¼ B t1ð Þ* x2* hþ eð Þð Þð Þ � B t2ð Þ* x1* hþ eð Þð Þð Þ
B t2ð Þ* w1* hþ eð Þð Þð Þ � B t1ð Þ* w2* hþ eð Þð Þð Þ

� �
:

ð24Þ
If the bed availability remains constant for a given

duration in future (from t1 to t2), then:

B t1ð Þ ¼ B t2ð Þ ¼ BðtÞ:
Hence:

r ¼ x2* hþ eð Þð Þ � x1* hþ eð Þð Þ
w1* hþ eð Þð Þ � w2* hþ eð Þð Þ

� �
: ð25Þ

3.4.2 A pre-existing care system

For a pre-existing care system there are already some
patients in various hospital and community phases of the
care system at time t=0. Therefore, one or more of the
elements of s0 is non-zero. For such a care system first we
should find the expected number of patients in each phase
at time t=tgiven days without any new admissions. Then we
find the distribution of the new patients. Therefore, the
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distribution of the patients without new admissions (from
(4)) is:

~stgiven ¼~s0*
Ytgiven
i¼1

PðiÞ; ð26Þ

ehtgiven ¼estgiven* hþ eð Þ ¼ es0*Ytgiven
i¼1

PðiÞ* hþ eð Þ ð27Þ

and the distribution of newly admitted patients (from (5)) is:

htgiven ¼ stgiven* hþ eð Þ
where stgivencan be calculated from (12) with

s0 ¼ 1; 0; 0; 0; . . . . . . :; 0; . . . 0f g:
Thus the expected number of admissions allowed is:

Areq ¼
B tgiven
� ��ehtgiven

htgiven
per day: ð28Þ

Similarly if the total daily cost of care is a constraint, the
expected number of admissions is:

Areq ¼
C tgiven
� �� ~

Ωtgiven

Ωtgiven
per day ð29Þ

where
~
Ωtgiven ¼ estgiven*c:

We can use (28) and (29) to estimate the expected
admission rate to satisfy the given bed availability con-
straints and the expected cost of care constraints respectively.

If a care system has variable number of admissions each
day the initial rate of admission a is given then from Eq. 13,
and the rate of change in admission rate is

r ¼ stgiven � x
� �

w
:

From (28)

stgiven ¼
B tgiven
� ��ehtgiven
a* hþ eð Þ :

Therefore the rate of change in admission rate is

r ¼
B tgivenð Þ�~htgiven

a* hþeð Þ � x

� �
w

¼ B tgiven
� ��ehtgiven � a*x* hþ eð Þ

a*w* hþ eð Þ : ð30Þ

Similarly from (29) the rate of change in admission rate is

r ¼
C tgivenð Þ� ~

Ωtgiven

a*c � x

� �
w

¼ C tgiven
� �� eΩtgiven � a*x*c

a*w*c
:

ð31Þ

4 An illustration

We illustrate the use of our model using the example of an
8-phase integrated care system proposed by Faddy and
McClean [33] comprising of four hospital phases (acute,
treatment, rehabilitative and long-stay), three community
phases (dependent, convalescent and recovered) and one
absorbing phase, death. Faddy and McClean [35] estimated
parameters for the Coxian distribution fitting this 8-phase
model to the dataset of all male patients admitted between
1969 and 1984 at the geriatric department of a London
hospital [31]. In this paper [35] the authors used penalized
maximum likelihood estimation with a penalty against
multi-model distributions (penalty against distributions
where the transition matrix Q had disparate eigenvalues)
thus avoiding over-fitting which might underestimate the
effects of time dependent covariates. They used the Nelder
Mead algorithm [36] routine of MATLAB software [37] to
perform the minimization. Figure 2 is the schematic
representation of this care system.

4.1 Daily resource requirement

We can estimate the daily resource requirements in a care
unit or a care system if we know the expected number of

acute treatment recovered

Death 

Admission 

rehabilitative Long-stay convalescentdependent

Fig. 2 Patient flow in the eight phase care system
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patients in each phase in the care unit at a given time in
future. To calculate the expected cost we have used the
indicative cost for the 8-phase care system estimated by
McClean & Millard [38] using relative weightings for each
phase based on the then current data for geriatric patients in
the UK. These relative weightings are 15, 10, 8 and 6 for
hospital phases acute, treatment, rehabilitative and long-
stay respectively and 5, 4 and 0.5 for community phases
dependent, convalescent and recovered respectively [38].
Also McClean & Millard [38] estimated average daily cost
of the care in acute phase as £150. Here we will consider 2
cases, one with a fixed number of admissions each day
and the other with a variable number of admissions each
day.

4.1.1 A fixed number of admissions

For a new care system [9] with one admission each day
(fixed), the expected number of patients in different phases
(after a given number of days) is presented in Table 1. Here
the average age of patients at the time of admission is
80 years and the initial year of the care system is 1976.
From Table 1, we can also calculate the expected number of
patients in any phase or expected cost with any (fixed)
number of admissions per day. If the number of admissions
per day are a then we need to multiply the corresponding

entry in Table 1 by a. For example, if in a new hospital,
each day on average 100 new patients are admitted, then
after 1,000 days, the expected numbers of patients in the
hospital and community are estimated as 5051 and 39981
respectively and the expected total daily cost of care is
estimated as £1,165,560. Similarly after 2,000 days, the
expected numbers of patients in the hospital and com-
munity are estimated as 6420 and 57785 respectively and
the expected total daily cost of care is estimated as
£1,253,450.

4.1.2 A variable number of admissions

Fiems et al. [13] describe how we can calculate the
expected number of patients in different phases, after a
given number of days, with a variable rate of admissions
per day. Again from (13) we here obtain:

sk ¼ xþ r*w

where the vector x represents the expected number of
patients in different phases, after a given number of days,
for a new care system with one admission per day and r is
the rate of change in the admission rate. The vector w is the
expected change in the patients’ distribution due to unit
(1 patient per day) change in admission rate. However, it is
not necessary to start the admission schedule with one

Table 1 Estimated number of patients and cost (new system with 1 admission/ day)

Days Phase1 Phase2 Phase3 Phase4 Phase5 Phase6 Phase7 Phase8 Total Daily Cost(In £)

100 11.07 8.95 10.16 0.27 11.16 31.65 2.85 23.89 5,223.0

200 11.97 9.67 14.29 0.88 12.50 70.13 16.28 64.27 7,471.3

300 12.60 10.16 15.94 1.50 12.95 95.47 38.94 112.44 8,931.8

400 13.04 10.50 16.94 2.06 13.10 110.38 68.06 165.92 9,895.4

500 13.36 10.74 17.70 2.55 13.09 118.00 101.21 223.35 10,527.1

600 13.60 10.93 18.32 2.97 12.99 120.78 136.51 283.90 10,940.3

700 13.81 11.08 18.87 3.34 12.84 120.51 172.51 347.04 11,214.3

800 13.99 11.22 19.39 3.66 12.66 118.41 208.18 412.47 11,403.4

900 14.18 11.36 19.91 3.94 12.49 115.29 242.78 480.04 11,543.0

1,000 14.38 11.51 20.43 4.19 12.32 111.66 275.83 549.68 11,655.6

1,100 14.59 11.66 20.98 4.42 12.15 107.82 307.00 621.37 11,754.1

1,200 14.82 11.83 21.55 4.62 12.00 103.93 336.12 695.12 11,846.0

1,300 15.07 12.01 22.16 4.80 11.86 100.08 363.08 770.93 11,934.9

1,400 15.33 12.21 22.80 4.99 11.74 96.32 387.82 848.80 12,022.4

1,500 15.61 12.41 23.47 5.16 11.62 92.64 410.34 928.74 12,109.1

1,600 15.91 12.63 24.18 5.32 11.51 89.07 430.66 1,010.71 12,195.2

1,700 16.22 12.86 24.92 5.49 11.41 85.59 448.82 1,094.68 12,280.8

1,800 16.55 13.10 25.70 5.66 11.31 82.21 464.88 1,180.59 12,365.8

1,900 16.89 13.35 26.51 5.82 11.22 78.92 478.91 1,268.38 12,450.3

2,000 17.24 13.61 27.36 5.99 11.14 75.72 490.99 1,357.96 12,534.5
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admission per day as we can have multiple admissions per
day. Therefore, we can generalize (13) to:

sk ¼ a* xþ r*wð Þ ð32Þ
where a represents the initial number of admissions per day.

Table 2 presents the value of the vector w for a number
of time points in the future. As a and r are scalars, we can
calculate the estimated number of patients in each phase as
a linear combination of x and w and similarly we can
calculate the cost. For example, with initial rate of
admission 100 patients per day and this rate increasing by
1 patient per day (r=0.01), the expected total daily cost of
care after 500 days is estimated as £2,593,937 (100*
(10527.1+0.01*1541227)) and after 1,000 days it is
estimated as £3,898,469 (100*(11655.6+0.01*2732909)).

4.2 Resource constraints

4.2.1 A new care system

If resource availability at a given time in the future is a
constraint it is necessary to schedule admissions in advance
such that at a given time in the future the number of
patients requiring care resources should be equal to the
amount of resources available. In Table 3, we have
provided a few examples of resource constraints: the total
daily cost limit and the number of beds available in the
hospital (summing all beds available in all hospital
phases acute, treatment, rehabilitative and long-stay) at
a given time in the future. We have also calculated the
expected number of admissions per day (assuming a

Table 2 Estimated values of change multipliers for different phases (new system with 1 admission/ day)

Days Phase1 Phase2 Phase3 phase4 phase5 Phase6 phase7 Phase8 Total daily cost (in £)

100 167.3 210.4 516.6 18.4 417.1 1,975.9 210.2 1,434.1 189,509

200 310.4 321.8 1,084.7 110.1 636.1 7,582.6 2,262.6 7,591.6 518,548

300 484.2 455.4 1,463.7 263.2 817.0 13,819.4 7,770.0 19,777.1 883,538

400 665.4 594.2 1,777.9 455.7 978.6 19,163.7 17,421.6 38,742.9 1,231,388

500 845.8 731.4 2,069.0 671.6 1,123.0 23,077.0 31,232.7 64,999.4 1,541,227

600 1,026.9 868.2 2,351.0 899.2 1,254.4 25,572.0 48,793.5 98,934.8 1,812,459

700 1,215.0 1,009.1 2,634.8 1,130.1 1,379.7 26,921.5 69,466.6 140,893.1 2,054,930

800 1,417.2 1,159.9 2,932.3 1,359.2 1,505.8 27,477.1 92,528.9 191,219.5 2,281,731

900 1,640.1 1,325.7 3,255.0 1,583.3 1,638.4 27,564.7 117,264.4 250,278.3 2,504,815

1,000 1,888.2 1,510.2 3,612.6 1,801.3 1,780.8 27,436.4 143,015.9 318,454.7 2,732,909

1,100 2,164.2 1,715.4 4,011.9 2,013.0 1,934.6 27,259.1 169,206.2 396,145.7 2,971,016

1,200 2,468.7 1,941.9 4,457.2 2,219.2 2,099.1 27,124.0 195,340.7 483,749.1 3,220,849

1,300 2,800.9 2,189.4 4,950.4 2,421.2 2,272.9 27,066.0 220,998.7 581,650.5 3,481,661

1,400 3,159.0 2,456.4 5,491.5 2,620.1 2,453.7 27,083.2 245,822.4 690,213.8 3,751,133

1,500 3,540.3 2,741.0 6,079.0 2,817.4 2,638.7 27,153.9 269,506.6 809,773.2 4,026,123

1,600 3,941.8 3,041.0 6,710.4 3,014.2 2,825.2 27,248.3 291,791.6 940,627.5 4,303,206

1,700 4,360.3 3,353.9 7,382.8 3,211.8 3,010.6 27,336.0 312,458.2 1,083,036.5 4,579,022

1,800 4,792.2 3,677.1 8,092.5 3,411.0 3,192.4 27,390.4 331,326.2 1,237,218.1 4,850,474

1,900 5,234.3 4,008.0 8,835.7 3,612.7 3,368.4 27,389.5 348,253.7 1,403,347.7 5,114,825

2,000 5,682.8 4,343.9 9,608.4 3,817.4 3,536.7 27,317.5 363,136.8 1,581,556.5 5,369,748

Table 3 Estimated number of admissions per day according to budget or beds availability

Day Estimating the number of admissions per day if the constraint is the
daily cost

Estimating the number of admissions per day if the constraint is the
beds availability

Daily cost
limit (in £)

Number of beds
available in the
hospital

Average
admissions
per day

Number of
beds available in
the hospital

Daily cost
(in £)

Average
admissions
per day

500 800,000 3,370 76 6,000 628,690 135

1,000 400,000 1,734 34 8,000 822,597 158

1,500 500,000 2,340 41 4,500 458,330 79

2,000 750,000 3,841 60 1,700 171,991 26
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fixed number of admissions each day) allowed to meet
these constraints.

With a variable number of admissions per day we can
have a number of different expected admission schedules to
satisfy the same constraints depending on the expected
initial rate of admissions (a) and expected rate of change in
admission rate (r). For such a care system, usually these
decisions are made concerning the resource availability at
some time points in the future. We can use (15)–(17) to
calculate the expected initial rate of admissions to satisfy
the resource constraint for the first given time point in the
future. By using (20), (21), (24) and (25) we can then
calculate the expected rate of change in admission rate (r)
to satisfy constraints relating to two given time points. In
Table 4 we have provided some examples of resource
constraints for total daily cost constrained at two time
points in the future. We have calculated the expected value
of r to satisfy these constraints.

4.2.2 A pre-existing care system

For a pre-existing care system, first we allocate the care
resources to the expected remaining patients from the

patients already in the system at time t=0 (or today/ present
time). Then we allocate the remaining resources to the
expected new patients in the same manner as in the case of
a new care system discussed above. Using (4), we can
compute the expected number of remaining patients in
different phases at a given time in the future (tgiven) from
patients already in the system at time t = 0. Daily care cost
for such patients can be computed using (8). Again from (4)
we obtain:

stgiven ¼ s0*
Ytgiven
i¼1

PðiÞ ¼ s0*Htgiven ð33Þ

where

Htgiven ¼
Ytgiven
i¼1

PðiÞ ð34Þ

and Htgiven ¼ hij
� �

is the matrix of the expected number of
patients in phase j at time tgiven if there is one patient in
phase i at time t=0. A typical value of Htgivenfor tgiven=
1,000 days is:

Htgiven¼1000 ¼

0:0022 0:0017 0:0029 0:0020 0:0017 0:0182 0:2253 0:7460

0:0024 0:0018 0:0032 0:0024 0:0019 0:0197 0:2437 0:7251

0:0018 0:0013 0:0023 0:0050 0:0014 0:0149 0:1789 0:7943

0:0006 0:0005 0:0008 0:1107 0:0009 0:0095 0:0430 0:8341

0:0030 0:0023 0:0040 0:0014 0:0023 0:0245 0:3079 0:6547

0:0032 0:0024 0:0043 0:0013 0:0025 0:0262 0:3319 0:6282

0:0044 0:0033 0:0058 0:0012 0:0034 0:0324 0:4664 0:4831

0 0 0 0 0 0 0 1:0000

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
and a typical value of Htgiven for tgiven=2,000 days is:

Htgiven¼2000 ¼

0:0013 0:0009 0:0018 0:0006 0:0007 0:0050 0:0829 0:9069

0:0014 0:0010 0:0019 0:0006 0:0008 0:0054 0:0897 0:8992

0:0010 0:0008 0:0014 0:0008 0:0006 0:0040 0:0662 0:9253

0:0004 0:0003 0:0005 0:0123 0:0003 0:0018 0:0242 0:9603

0:0017 0:0013 0:0024 0:0006 0:0010 0:0068 0:1131 0:8731

0:0018 0:0014 0:0026 0:0006 0:0010 0:0073 0:1219 0:8633

0:0026 0:0019 0:0037 0:0008 0:0014 0:0102 0:1699 0:8096

0 0 0 0 0 0 0 1:0000

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
We can estimate the expected resource requirements for

such a care system by using (33) and (34). For example if
there are no new admissions to a care system with initially
only 500 patients in the acute phase (and no patient in any

other phase) then the expected number of patients left in
care system after 2,000 days will be 0.65, 0.45, 0.9, 0.3,
0.35, 0.25 and 41.45 patients respectively in the acute
phase, treatment phase, rehabilitative phase, long-stay
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phase, dependent phase, convalescent phase and recovered
phase.

We can use (28) and (29) to estimate the expected
admission rate to satisfy the given bed availability
constraints and the expected cost of care constraints
respectively. For example if a care system with initially
100 patients in each phase has an expansion plan to double
the expected total daily cost of care after 1,000 days, then

es0¼ 100 100 100 100 100 100 100 0f g
and

eΩ0 ¼ U48500:

The constraint is

C tgiven¼ 1000
� �¼2*eΩ0 ¼ U97000:

From (33) and (34) we obtain estgiven¼1000¼es0*Htgiven¼1000 ¼
1:76; 1:33 2:33 12:4 1:41 14:54 179:71 486:55f g;

and eΩtgiven¼1000 ¼ U2878:05:From (29), the mean rate of
admissions allowed (with a fixed number of admissions each
day) will be

Areq ¼
C tgiven ¼ 1000
� �� eΩtgiven¼1000

Ωtgiven¼1000
per day ¼ 97000� 2878:05

Ωtgiven¼1000
:

From Table 1, Ωtgiven¼1000
¼ U11655:60

Therefore, Areq=8.0753 patients/day.
For a care system with variable number of admissions

each day, if the initial rate of admission (a) is 10 patients/
day, then using (31) the rate of change in admission rate (r)
can be estimated as follows:

r ¼ C tgiven ¼ 1000
� �� eΩtgiven¼1000 � a* x*cð Þ

a* w*cð Þ :

Putting the values of x*cð Þ and w*cð Þ from the Tables 1
and 2 respectively we get

r ¼ 97000� 2878:05� 10*11655:6ð Þ
10*2732909

¼ �0:000821:

If the same care system has a contraction plan to half the
expected total daily cost of care after 1,000 days, then the
constraint is

C tgiven¼ 1000
� �¼ eΩ0

2
¼ U24250:

From (29), the mean rate of admissions allowed (with a
fixed number of admissions each day) will be

Areq ¼
C tgiven ¼ 1000
� �� eΩtgiven¼1000

Ωtgiven¼1000
per day ¼ 24250� 2878:05

Ωtgiven¼1000
:

From Table 1, x*cð ÞΩtgiven¼1000 ¼ U11655:60
Therefore, Areq=1.8336 patients/day.
For a care system with variable number of admissions

each day, if the initial (or present) rate of admission (a) is
10 patients/day, then using (31) the rate of change in
admission rate (r) can be estimated as follows:

r ¼ C tgiven ¼ 1000
� �� eΩtgiven¼1000 � a* x*cð Þ

a* w*cð Þ :

Putting the values of and w*cð Þ from Tables 1 and 2
respectively we get

r ¼ 24250� 2878:05� 10*11655:6ð Þ
10*2732909

¼ �0:003483:

If the bed availability is a constraint, then we can use (28)
to estimate the mean rate of admissions allowed for a care
system with a fixed number of admissions each day and
(30) to estimate the rate of change in admission rate (r) for
a care system with variable number of admissions each day.

5 Discussion

In our model, we assume that there is always a waiting list
of patients who can be admitted to the first phase of the
care system whenever there is a bed available. This
assumption is realistic in many practical situations. How-
ever, as the transition probabilities are estimated separately

Table 4 Estimated rate of change in admission rate (r) and estimated number of admissions per day (a) to satisfy given budget constraints at two
time points in the future

t1 in days C(t1) in £ t2 in days C(t2)
in £

Areq=a (Estimated initial
admission rate)

r (estimated rate of change
in admission rate)

500 800,000 1,000 800,000 88.23 −0.00095
500 800,000 1,000 120,240 30.83 0.01

1,000 400,000 1,500 500,000 17.64 0.04

1,000 500,000 1,200 400,000 100 −0.0024354
1,500 500,000 2,000 610,000 15.73 0.049

1,600 200,000 2,000 200,000 18.47 −0.0032
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for each patient in the care system, the model can be
modified for resource requirements planning in other
scenarios where patients arrive arbitrarily and admissions
can be modeled as a Poisson stream. Another limitation of
our model is that it is based largely on expected values. The
model can therefore be used to predict the expected number
of patients in each phase and expected daily cost of care.
However, these expected numbers represent long term
averages, but do not reflect variability. We are currently
working on enhancing our model to estimate the variability
of these averages and to examine its effects. Such
variability and its effects can also be estimated using a
stochastic simulation models (such as a discrete event
simulation).

An obvious application of our model is to facilitate
decision making of health and social care planners,
managers and policy makers for resource planning and
budget allocation, especially for the elderly care. However,
this model can be customized for other care systems as
well. Our model equips care planners, managers and policy
makers with a tool for resource planning, budget allocation
and strategic decision making for care management and
service improvement. In a community based setting, they
can use our model with demographic data and regional
health statistics data, to allocate budget for health and social
care for the population of their region. Bed availability,
optimum utilization of the allocated budget, minimization
of waiting time and the size of patient queues can thus be
assured Individual resource requirements for hospital care
and community care can also be estimated. Another
application of the tool is in health insurance where an
insurance company might use the model to forecast
resource requirements and then decide the optimum
premium for the patient’s health insurance policy.

Our model can also be used for better informed budget
allocation and resource planning decisions evaluating the
combined cost measure of the dead-alive trade off, quality of
life and economic costs [39]. This can be achieved by using
our model coupled with a partially observable Markov
decision process based on, for example, the patient manage-
ment model proposed by [39] to select the care pathway
which optimizes the combined cost for the integrated care
system. This will also facilitate cost effectiveness analysis
(CEA) [40–42] and cost-utility analysis (CUA) [40, 43] of
different admission scheduling policies and resource man-
agement strategies. For example we might decide if it is cost-
effective to discharge (from a hospital phase) a patient to a
care home or nursing home or his/her own home, with a care
package such as is described in [44]. We can estimate the
resource availability and schedule the admissions according-
ly. Quality of life can be measured in terms of quality
adjusted life years gained (QALY) [45], disability adjusted
life years (DALYs) [45], life years gained (LYs gained) [45]

or Sen’s capability approach [46, 47]. It can also be
measured for individual patients in the care system facilitat-
ing combined cost effectiveness analysis for the whole the
system as in the model the transition probabilities are
estimated separately for each patient.

To understand the effect of change in the various input
parameters we carried out the sensitivity analysis of various
input parameters (see Appendix 1 for the mathematical
details). The results of this analysis can be summarized as
follows:

& The mean number of patients in each phase on a given
day in the future increases exponentially with the
change in a transition rate (a parameter of transition
matrix Q) (see Eqs. 35 and 36, Appendix 1).

& The mean number of patients in each phase on a given
day in the future increases linearly with the change in
the initial (or fixed) admission rate (see Eq. 37,
Appendix 1).

& The mean number of patients in each phase on a given
day in the future increases linearly with the change in
the rate of change in the admission rate (see Eq. 38,
Appendix 1).

& Changes in the expected total daily cost on a given day
in the future increases linearly with changes in daily
cost of care in different phases (and similarly with the
change in the relative weighting for a phase for
indicative cost) (see Eq. 39, Appendix 1).

& If the beds availability on a given day in the future is a
constraint, then the expected number of admissions
allowed each day decreases exponentially with the
change in a transition rate (see Eqs. 40 and 41,
Appendix 1).

& If the daily cost of care on a given day in the future is a
constraint, then the expected number of admissions
allowed each day decreases approximately linearly with
changes in daily cost of care in different phases (and
similarly with the change in the relative weighting for a
phase for indicative cost) (see Eqs. 42 and 43,
Appendix 1).

Our model is very efficient in terms of algorithm
complexity. Implementation of the algorithm discussed in
the last section for resource requirements forecasting and/or
admission scheduling would require matrix multiplications
for each new admission and for each day throughout the
duration we wish to forecast the resource requirement. Also
the number of admissions is equal to the time horizon of the
resource requirement. Therefore the time complexity of the
algorithm is O(k2) where k is the number of days ahead for
which the resource requirement requires to be forecasted.
Also, we require to store the previous value of matrix sk for
each iteration. Therefore the space complexity of the
algorithm is O(n).
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6 Conclusion

We have demonstrated how a discrete time non-
homogeneous Markov models can be effectively used in
more sophisticated admission scheduling and resource
requirement forecasting and allocation. We allow both
fixed and variable rate of admissions to satisfy the demand
or resource constraints. This can be a very useful tool for
care managers and policy makers so as to facilitate strategic
decision making for care management and service improve-
ment. We are currently working to develop our approach as
a decision (what-if analysis) tool.
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Appendix 1: Equations for sensitivity analysis

The mean number of patients in each phase after k days

The change in the transition rates

From Eq. 4, the mean number of patients in each phase
after k days is given by:

sk ¼ s0*
Yk
i¼1

PðiÞ

where P(i) represents the value of transition matrix P on day
i which is defined in Eq. 2 as follows

sk ¼ s0*
Yk
i¼1

exp QðiÞ
� �� �

Therefore,

) sk þΔQsk ¼ s0*
Qk
i¼1

exp QðiÞ þΔQðiÞ� �� �
¼ s0*

Qk
i¼1

ðexp QðiÞ� �
* exp ΔQðiÞÞ� �

) sk þΔQsk ¼ s0*
Qk
i¼1

exp QðiÞ� �� �
*
Qk
i¼1

exp ΔQðiÞ� �� �
) sk þΔQsk ¼ sk*

Qk
i¼1

exp ΔQðiÞ� �� �
:

ð35Þ

Here ∆Q represents the change in the transition matrix Q
defined by Eq. 1. There might be equal changes in all
transition rates which represents a global shift in transition

rates, or there might be just change in one transition rate such
as a change in the value of μl. If the latter is the case then,

exp ΔQð Þ ¼ exp Δmlð Þ

Therefore

sk þΔQsk ¼ sk*
Yk
i¼1

exp Δml
ðiÞ

� �� �
: ð36Þ

The change in the initial number of admissions per day

If the initial number of admissions per day is a with a
variable rate of admissions per day, then from Eq. 30, the
expected number of patients in different phases after a
given number of days,

sk ¼ a* xþ r*wð Þ
sk þΔask ¼ aþΔað Þ* xþ r*wð Þ
sk þΔask ¼ sk þΔa* xþ r*wð Þ Δask

sk
¼ Δa

a

ð37Þ

The change in the rate of change in the admission rate

Again from Eq. 30, for calculating the sensitivity of r the
rate of change in the admission rate.

sk ¼ a* xþ r*wð Þ

sk þΔrsk ¼ a* xþ r þΔrð Þ*wð Þ
sk þΔrsk ¼ a* xþ r þΔrð Þ*wð Þ ¼ a* xþ r*wð Þ þ a*Δr*w

sk þΔrsk ¼ sk þ a*Δr*w

Δrsk
sk

¼ Δr*w
xþ r*wð Þ

ð38Þ

The expected total daily cost on dayk

The change in cost matrix

From Eq. 8, the expected total daily cost on day k is given
as follows

Ωk ¼ sk*c

) Ωk þΔcΩk ¼ sk* cþΔcð Þ

) Ωk þΔcΩk¼Ωk þ sk*Δc

) ΔcΩk

Ωk
¼Δc

c
:

ð39Þ

Here ∆c represents the change in cost matrix c defined
in Section 3.1. Section 4.1 defines c in the form of relative
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weightings. In such a case ∆c represents the change in one
or more weightings.

The expected number of admissions allowed each day

The change in the transition rates

From Eq. 15 the expected number of admissions allowed
each day can be calculated as:

Areq ¼
B tgiven
� �
htgiven

per day

where htgiven is defined in the Eq. 5

htgiven ¼
Xnþm

i¼1

stgiven;i ¼ stgiven* hþ eð Þ

Therefore

AreqþΔQAreq ¼
B tgiven
� �

htgiven*
Qtgiven
i¼1

exp ΔQðiÞ� �� � per day
) AreqþΔQAreq ¼ AreqQtgiven

i¼1
exp ΔQðiÞ� �� � per day

ð40Þ

If ΔQ represents the change in only one transition rate such
as μl then

AreqþΔQAreq ¼ AreqQtgiven
i¼1

exp Δml
ðiÞð Þð Þ

per day ð41Þ

The change in cost matrix

If the total daily cost of care is a constraint then the
expected number of admissions is calculated in Eq. 17:

Areq ¼
C tgiven
� �
Ωtgiven

per day

Ωtgiven is the expected total daily cost at time tgiven and is
defined in (8). Therefore

AreqþΔcAreq ¼
C tgiven
� �

Ωtgiven þ stgiven*Δc
per day

AreqþΔcAreq ¼ Areq

1þ Δc=cð Þ per day
ΔcAreq

Areq
¼ �Δc=c

1þ Δc=cð Þ per day ¼ �1

1þ c=Δcð Þ per day

ð42Þ

If ∆c<<c, then

ΔcAreq

Areq
� �Δc

c
per day ð43Þ

Appendix 2

Table 5 Terms/ parameters used in the paper

n The number of hospital phases in the care system.

m The number of community phases in the care system.

Q The transition matrix for the absorbing Markov
representing the care system.

qij The transition rate (next transition is to phase j |
currently in phase i).

li The rate of transition from the hospital phase i to
the hospital phase i+1.

μi The rate of transition from the hospital phase i to the
absorbing phase (death).

νi The rate of transition from the hospital phase i to the
first community phase.

αi The rate of transition from the community phase i to
the community phase i+1.

βi The rate of transition from the community phase i to
the absorbing phase (death).

γi The rate of transition from the community phase i to
the first hospital phase.

P The discrete time transition probability matrix.

pij Probability (next transition is to phase j | currently in
phase i).

P(i) The value of transition matrix P on day i.

PðiÞ
j The transition probability matrix for patient j on day i.

t Time in days.

ti A date in the future

tgiven A given time in the future

s0 The vector representing initial values of number of
patients in different phases of the system.

s0,i The initial value of number of patients in phase i.es0 The vector representing values of number of (pre-existing)
patients in different phases of the system at t=0.

sk The mean number of patients in each phase after k days.estgiven The distribution of the patients at time tgiven without
any new admissionsestgiven¼1000 The distribution of the patients at time tgiven=1,000
days without any new admissions

c The cost vector representing the daily cost of care in
different phases.

c daily cost of care in phase i.

C(tgiven) The available daily budget (cost) at time tgiven

C(tgiven=1,000) The available daily budget (cost) at time
tgiven=1,000 days

C(ti) the total daily expenses (cost) at time ti

χ Vector of time dependent covariates.
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χi The ith time dependent covariate.

σ A coefficient parameter used in the log-linear function.

B A vector used in the log-linear function.

ηk The estimated number of patients in the care system on day
k.

hk
h The expected number of patients in hospital after k days.

hk
c The expected number of patients in community

after k days.

hti The expected number of patients in the care system
at time tiehtgiven The expected number of patients in the care system
at time tgiven without any new admissions

htgiven The expected number of patients in the care system
at time tgiven

hhtgiven The number of patients in hospital at time tgiven
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