Skip to main content
Log in

Identification of duplicates and fingerprinting of primary and secondary wild annual Cicer gene pools using AFLP markers

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Wild annual Cicer gene pools contain valuable germplasm for chickpea improvement programs. Previous research showed that duplication might exist in accessions collected from these gene pools, which would hinder chickpea breeding and related research. AFLP (amplified fragment length polymorphism) markers were used to fingerprint the world collections of the primary and secondary gene pools including C. reticulatum Lad., C. bijugum K.H. Rech., C. judaicum Boiss. and C. pinnatifidum Jaub. et Sp. Duplicates were detected in a total of 24 accessions in both the gene pools, highlighting the necessity to fingerprint the germplasm. Genotypic difference was detected as gene pool specific, species specific and accession specific AFLP markers. These were developed into fingerprinting keys for accession identification between and within species and gene pools. Use of AFLP markers to detect duplicates and to identify accessions is a reliable method which will assist in the characterisation and use of wild annual Cicer germplasm in chickpea improvement programs. We recommend the procedure presented in this paper as a standard approach for the precise genetic identification and characterisation of future world collections of wild Cicer, to keep germplasm integrity and to benefit chickpea breeding and related research programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbo S., Berger J. and Turner N.C. (2003). Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol. 30: 1081–1087

    Article  Google Scholar 

  • Arens P., Coops H., Jansen J. and Vosman B. (1998). Molecular genetic analysis of black poplar (Populus nigra L.) along Dutch rivers. Mol. Ecol. 7: 11–18

    Article  CAS  Google Scholar 

  • Astarini I.A., Plummer J.A., Lancaster R.A. and Yan G. (2004). Fingerprinting of cauliflower cultivars using RAPD markers. Aust. J. Agric. Res. 55: 117–124

    Article  CAS  Google Scholar 

  • Bekele E., Fido R.J., Tatham A.S. and Shewry P.R. (1995). Heterogeneity and polymorphism of seed proteins in tef (Eragrostis tef). Hereditas 122: 67–72

    Article  CAS  Google Scholar 

  • Berger J., Abbo S. and Turner N.C. (2003). Ecogeography of annual Cicer species: the poor state of the world collection. Crop Sci. 43: 1076–1090

    Article  Google Scholar 

  • Cabrita L.F., Aksoy U., Hepaksoy S. and Leitao J.M. (2001). Suitability of isozymeRAPD and AFLP markers to assess genetic differences and relatedness among fig (Ficus carica L.) clones. Sci. Hortic. 87: 261–273

    Article  CAS  Google Scholar 

  • Cansian R.L. and Echeverrigaray S. (2000). Discrimination among cultivars of cabbage using randomly amplified polymorphic DNA markers. Hortscience 35: 1155–1158

    CAS  Google Scholar 

  • Choumane W., Winter P., Weigand F. and Kahl G. (2000). Theor. Appl. Genet. 101: 269–278

    Article  CAS  Google Scholar 

  • Clarke H.J., Kuo I., Kuo J. and Siddique K.H.M. (2004). Abortion and stages for embryo rescue following wide crosses between chickpea (Cicer arietinum L.) and C. bijugum K.H. Rech. In: (eds) Legumes for the Benefit of AgricultureNutrition and the environment (5th European Conference on Grain Legumes and 2nd International Conference on Legume Genomics and Genetics), 7–11 June 2004, pp 193. Dijon, France

    Google Scholar 

  • Cooke R.J. (1999). Modern methods for cultivar verification and the transgenic plant challenge. Seed Sci. Technol. 27: 669–680

    Google Scholar 

  • Croser J.S., Ahmad F., Clarke H.J. and Siddique K.H.M. (2003). Utilisation of wild Cicer in chickpea improvement - progress, constraints, and prospects. Aust. J. Agr. Res. 54: 429–444

    Article  Google Scholar 

  • Gillies A.C.M. and Abbott R.J. (1998). Evaluation of random amplified polymorphic DNA for species identification and phylogenetic analysis in Stylosanthes (Fabaceae). Plant Syst. Evol. 211: 201–216

    Article  Google Scholar 

  • Knights T., Brinsmead B., Fordyce M., Wood J., Kelly A. and Harden S. (2002). Use of the wild relative Cicer echinospermum in chickpea improvement. In: McComb, J.A. (eds) Proceedings of the 12th Australasian Plant Breeding Conference15–20th September, 2002, pp 150–154. Australasian Plant Breeding Assoc. Inc, Perth, W. Australia

    Google Scholar 

  • Kumar P.P., Yau J.C.K. and Goh C.J. (1998). Genetic analyses of Heliconia species and cultivars with randomly amplified polymorphic DNA (RAPD) markers. J. Am. Soc. Hortic. Sci. 123: 91–97

    CAS  Google Scholar 

  • Mallikarjuna N. (1999). Ovule and embryo culture to obtain hybrids from interspecific incompatible pollinations in chickpea. Euphytica 110: 1–6

    Article  Google Scholar 

  • Noli E., Conti S., Maccaferri M. and Sanguineti M.C. (1999). Molecular characterization of tomato cultivars. Seed Sci. Technol. 27: 1–10

    Google Scholar 

  • Pradhan A., Yan G. and Plummer J.A. (2004). Development of DNA fingerprinting keys for the identification of radish cultivars. Aust. J. Exp. Agr. 44: 95–102

    Article  CAS  Google Scholar 

  • Robertson L.D., Singh K.B. and Ocampo B. (1995). A Catalog of Annual Wild Cicer Species. International Center for Agricultural Research in the Dry Areas (ICARDA). Aleppo, Syria

    Google Scholar 

  • Shan F., Yan G. and Plummer J.A. (2003a). Karyotype evolution in the genus Boronia (Rutaceae). Bot. J. Linn. Soc. 142: 309–320

    Article  Google Scholar 

  • Shan F., Yan G. and Plummer J.A. (2003b). Meiotic chromosome behaviour and Boronia (Rutaceae) genome reorganization. Aust. J. Bot. 51: 599–607

    Article  CAS  Google Scholar 

  • Shan F., Yan G. and Plummer J.A. (2003c). Cytoevolution of Boronia genome revealed by flourescent in situ hybridisation with rDNA probes. Genome 46: 507–513

    Article  CAS  Google Scholar 

  • Shan F., Clarke H.J., Yan G., Plummer J.A. and Siddique K.H.M. (2004). Development of DNA fingerprinting keys for discrimination of Cicer echinospermum P.H. Davis accessions using AFLP markers. Aust. J. Agric. Res. 55: 947–952

    Article  CAS  Google Scholar 

  • Shan F., Clarke H.J., Plummer J.A., Yan G. and Siddique K.H.M. (2005). Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theor. Appl. Genet. 110: 381–391

    Article  PubMed  CAS  Google Scholar 

  • Singh K.B., Ocampo B. and Robertson L.D. (1998). Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet. Resour. Crop Evol. 45: 9–17

    Article  Google Scholar 

  • Singh S., Gumber R.K., Joshi N. and Singh K. (2005). Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breeding 124: 477–480

    Article  Google Scholar 

  • Tohme J., Orlando Gonzalez D., Beebe S. and Duque M.C. (1996). AFLP analysis of gene pools of a wild bean core collection. Crop Sci. 36: 1375–1384

    Article  CAS  Google Scholar 

  • Mes T.H.M., den Jijs J.C.M. and Bachmann K. (2000). Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Mol. Ecol. 9: 1–8

    Article  Google Scholar 

  • Virk P.S., Newbury H.J., Jackson M.T. and Ford-Lloyd B.V. (1995). The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theor. Appl. Genet. 90: 1049–1055

    Article  CAS  Google Scholar 

  • Winfield M.O., Arnold G.M., Cooper F., Le Ray M., White J., Karp A. and Edwards K.J. (1998). A study of genetic diversity in Populus nigra subsp. betulifolia in the upper Severn area of the UK using AFLP markers. Mol. Ecol. 7: 3–10

    Article  CAS  Google Scholar 

  • Winter P., Pfaff T., Udupa S.M., Huettel B., Sharma P.C., Sahi S., Arreguin-Espinoza R., Weigand F., Muehlbauer F.J. and Kahl G. (1999). Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol. Gen. Genet. 262: 90–101

    Article  PubMed  CAS  Google Scholar 

  • Yadav S.S., Turner N.C. and Kumar J. (2002). Commercialization and utilization of wild genes for higher productivity in chickpea. In: McComb, J.A. (eds) Proceedings of the 12th Australasian Plant Breeding Conference15–20th September, 2002, pp 155–160. Australasian Plant Breeding Assoc. Inc, Perth, W. Australia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, F., Clarke, H.J., Yan, G. et al. Identification of duplicates and fingerprinting of primary and secondary wild annual Cicer gene pools using AFLP markers. Genet Resour Crop Evol 54, 519–527 (2007). https://doi.org/10.1007/s10722-006-0008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-0008-2

Key words

Navigation