Skip to main content

Advertisement

Log in

MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin−/dermatan sulfate and hyaluronan biosynthesis

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (β4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of β4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in β4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Karousou E.G. et al.: Analysis of glycosaminoglycans by electrophoretic approach. Curr. Pharm. Anal. 4(2), 78–89 (2008)

    Article  CAS  Google Scholar 

  2. Vigetti D. et al.: Analysis of hyaluronan synthase activity. Methods Mol. Biol. 1229, 201–208 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. Varki, A.: Essentials of glycobiology. (2nd ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 2009

  4. Iozzo R.V., Schaefer L.: Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hediger M.A. et al.: The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch. 447(5), 465–468 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Bernfield M. et al.: Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Götte M. et al.: Changes in heparan sulfate are associated with delayed wound repair, altered cell migration, adhesion and contractility in the galactosyltransferase I (beta4GalT-7) deficient form of Ehlers-Danlos syndrome. Hum. Mol. Genet. 17(7), 996–1009 (2008)

    Article  PubMed  Google Scholar 

  8. Kirkbride K.C., Ray B.N., Blobe G.C.: Cell-surface co-receptors: emerging roles in signaling and human disease. Trends Biochem. Sci. 30(11), 611–621 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Esko J.D., Selleck S.B.: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Bülow H.E., Hobert O.: The molecular diversity of glycosaminoglycans shapes animal development. Annu. Rev. Cell Dev. Biol. 22, 375–407 (2006)

    Article  PubMed  Google Scholar 

  11. Bishop J.R., Schuksz M., Esko J.D.: Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature. 446(7139), 1030–1037 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Forsberg E., Kjellén L.: Heparan sulfate: lessons from knockout mice. J. Clin. Invest. 108(2), 175–180 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Whitelock J.M., Iozzo R.V.: Heparan sulfate: a complex polymer charged with biological activity. Chem. Rev. 105(7), 2745–2764 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. Sugahara K., Kitagawa H.: Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr. Opin. Struct. Biol. 10(5), 518–527 (2000)

    Article  CAS  PubMed  Google Scholar 

  15. Seidler D.G. et al.: Defective glycosylation of decorin and biglycan, altered collagen structure, and abnormal phenotype of the skin fibroblasts of an Ehlers-Danlos syndrome patient carrying the novel Arg270Cys substitution in galactosyltransferase I (beta4GalT-7. J Mol Med (Berl). 84(7), 583–594 (2006)

    Article  CAS  Google Scholar 

  16. Presto J. et al.: Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc. Natl. Acad. Sci. U. S. A. 105(12), 4751–4756 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Busse M. et al.: Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation. J. Biol. Chem. 282(45), 32802–32810 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Filipek-Górniok B. et al.: Expression of chondroitin/dermatan sulfate glycosyltransferases during early zebrafish development. Dev. Dyn. 242(8), 964–975 (2013)

    Article  PubMed  Google Scholar 

  19. Passi, A., et al., O-GlcNAcylation and hyaluronan synthesis. FASEB J. 26 (2012)

  20. Vigetti D. et al.: Role of UDP-N-Acetylglucosamine (GlcNAc) and O-GlcNAcylation of hyaluronan synthase 2 in the control of chondroitin sulfate and hyaluronan synthesis. J. Biol. Chem. 287(42), 35544–35555 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ishida N., Kawakita M.: Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35. Pflugers Arch. 447(5), 768–775 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. Hiraoka S. et al.: Nucleotide-sugar transporter SLC35D1 is critical to chondroitin sulfate synthesis in cartilage and skeletal development in mouse and human. Nat. Med. 13(11), 1363–1367 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. Hwang H.Y., Horvitz H.R.: The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated. Proc. Natl. Acad. Sci. U. S. A. 99(22), 14224–14229 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Götte M.: Syndecans in inflammation. FASEB J. 17(6), 575–591 (2003)

    Article  PubMed  Google Scholar 

  25. Karousou, E., et al.: Collagen VI and hyaluronan: the common role in breast cancer. Biotechnol. Res. Int. 2014

  26. Vigetti D. et al.: Epigenetics in extracellular matrix remodeling and hyaluronan metabolism. FEBS J. 281(22), 4980–4992 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. Vigetti D. et al.: Hyaluronan: biosynthesis and signaling. Biochim. Biophys. Acta. 1840(8), 2452–2459 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Vigetti D. et al.: Metabolic control of hyaluronan synthases. Matrix Biol. 35, 8–13 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. Multhaupt H.A. et al.: Extracellular matrix component signaling in cancer. Adv. Drug Deliv. Rev. 97, 28–40 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. Soares M.A. et al.: Heparan sulfate proteoglycans may promote or inhibit cancer progression by interacting with integrins and affecting cell migration. Biomed. Res. Int. 2015, 453801 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Beauvais D.M., Rapraeger A.C.: Syndecan-1-mediated cell spreading requires signaling by alphavbeta3 integrins in human breast carcinoma cells. Exp. Cell Res. 286(2), 219–232 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Feugaing D.D.S., Goette M., Viola M.: More than matrix: the multifaceted role of decorin in cancer. Eur. J. Cell Biol. 92(1), 1–11 (2013)

    Article  Google Scholar 

  33. Asimakopoulou A.P. et al.: The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo. 22(3), 385–389 (2008)

    CAS  PubMed  Google Scholar 

  34. Yamashita H. et al.: Mammalian and drosophila cells adhere to the laminin alpha4 LG4 domain through syndecans, but not glypicans. Biochem. J. 382(Pt 3), 933–943 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vieira L.A. et al.: The alga Bryothamnion seaforthii contains carbohydrates with antinociceptive activity. Braz. J. Med. Biol. Res. 37(7), 1071–1079 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. Fila G. et al.: In Vitro evaluation of dew-retting of flax by fungi from southern Europe. Ann. Appl. Biol. 138(3), 343–351 (2001)

    Article  Google Scholar 

  37. Götte M. et al.: miR-145-dependent targeting of junctional adhesion molecule a and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene. 29(50), 6569–6580 (2010)

    Article  PubMed  Google Scholar 

  38. Sempere L.F. et al.: Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 67(24), 11612–11620 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. Ibrahim S.A. et al.: Syndecan-1 (CD138) modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling. PLoS One. 8(12), e85737 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  40. Götte M. et al.: An expression signature of syndecan-1 (CD138), E-cadherin and c-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ. Breast Cancer Res. 9(1), R8 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rubin J.S. et al.: Dissociation of heparan sulfate and receptor binding domains of hepatocyte growth factor reveals that heparan sulfate-c-met interaction facilitates signaling. J. Biol. Chem. 276(35), 32977–32983 (2001)

    Article  CAS  PubMed  Google Scholar 

  42. Pasqualon T. et al.: Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells. Biochim. Biophys. Acta. 1863(4), 717–726 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. Vigetti D. et al.: Molecular cloning and characterization of UDP-glucose dehydrogenase from the amphibian Xenopus laevis and its involvement in hyaluronan synthesis. J. Biol. Chem. 281(12), 8254–8263 (2006)

    Article  CAS  PubMed  Google Scholar 

  44. Vigetti D. et al.: Analysis of hyaluronan synthase activity, in glycosaminoglycans, pp. 201–208. Springer, New York (2015)

    Google Scholar 

  45. Derksen P.W. et al.: Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes met signaling in multiple myeloma. Blood. 99(4), 1405–1410 (2002)

    Article  CAS  PubMed  Google Scholar 

  46. Nikolova V. et al.: Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis. 30(3), 397–407 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. Roucourt B. et al.: Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 25(4), 412–428 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gomes A.M., Stelling M.P., Pavão M.S.: Heparan sulfate and heparanase as modulators of breast cancer progression. Biomed. Res. Int. 2013, 852093 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Berninsone P. et al.: SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose. Proc. Natl. Acad. Sci. U. S. A. 98(7), 3738–3743 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dejima K. et al.: The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegans. FASEB J. 23(7), 2215–2225 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hwang H.Y., Horvitz H.R.: The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proc. Natl. Acad. Sci. U. S. A. 99(22), 14218–14223 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hascall V.C. et al.: The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc. Matrix Biol. 35, 14–17 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vigetti D. et al.: Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J. Biol. Chem. 289(42), 28816–28826 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bret C. et al.: Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells. Br. J. Haematol. 145(3), 350–368 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Birgit Pers, Paola Moretto and Sara Deleonibus for expert technical assistance. Funding was provided by German Academic Exchange Service DAAD Grants A/08/15601 (to MV), and EU H2020 RISE-MSCA Project grant number 645756 (GLYCANC) (to MG and AP). The authors acknowledge the Ph.D. School in Biological and Medical Sciences for Ilaria Caon and Elena Caravà fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manuela Viola or Alberto Passi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viola, M., Brüggemann, K., Karousou, E. et al. MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin−/dermatan sulfate and hyaluronan biosynthesis. Glycoconj J 34, 411–420 (2017). https://doi.org/10.1007/s10719-016-9735-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9735-6

Keywords

Navigation