Skip to main content

Advertisement

Log in

The ovine newborn and human foetal intervertebral disc contain perlecan and aggrecan variably substituted with native 7D4 CS sulphation motif: spatiotemporal immunolocalisation and co-distribution with Notch-1 in the human foetal disc

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Composite agarose (1.2 %) polyacrylamide (0.6 %) gel electrophoresis was used to separate discrete populations of native aggrecan and perlecan in newborn to 10 year old ovine intervertebral discs (IVDs). Semi-dry immunoblotting using core-protein and glycosaminoglycan (GAG) side chain specific monoclonal antibodies in combination with chondroitin ABC lyase demonstrated intra-chain native 7-D-4 chondroitin sulphate (CS) sulphation motifs and variable proportions of non-reducing terminal Δ4,5-unsaturated uronate-N-acetylgalactosamine-4-sulphate [2B6(+)] and Δ4,5-unsaturated glucuronate-N-acetylgalactosamine-6-sulphate [3B3(+)] disaccharides. The relative abundance of 2-B-6(+) aggrecan increased with advancing age of the IVD samples while the converse was true for the 3-B-3(+) aggrecan population. Relative 7D4 levels in aggrecan and perlecan were highest in the newborn IVD and significantly lower in the older IVD and other cartilage samples. Quantitation of 7D4 proteoglycan by enzyme linked immunosorbent inhibition assay confirmed the newborn ovine nucleus pulposus (NP) and inner annulus fibrosus (AF) contained higher levels (1.2-1.32 μg 7-D-4-proteoglycan/mg tissue wet weight) than the 2 (0.35-0.42 μg/mg wet weight tissue) and 10 year old IVD samples (0.16-0.22 μg/mg tissue wet weight) with the outer AF zones consistently containing lower levels of 7-D-4 epitope in all cases (P < 0.001). Cell populations on the margins of the AF and cartilaginous vertebral rudiments in newborn ovine and human foetal IVD strongly expressed 7-D-4 CS epitope and perlecan, This was co-distributed with Notch-1 expression in human foetal IVDs consistent with the 7-D-4 CS sulphation motif representing a marker of tissue development expressed by disc progenitor cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Markolf, K.L., Morris, J.M.: The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J. Bone. Joint. Surg. Am. 56, 675–687 (1974)

    PubMed  CAS  Google Scholar 

  2. Roughley, P.J., Melching, L.I., Heathfield, T.F., Pearce, R.H., Mort, J.S.: The structure and degradation of aggrecan in human intervertebral disc. Eur. Spine J. 15(Suppl 3), S326–S332 (2006)

    Article  PubMed  Google Scholar 

  3. Melrose, J., Hayes, A.J., Whitelock, J.M., Little, C.B.: Perlecan, the “jack of all trades” proteoglycan of cartilaginous weight-bearing connective tissues. Bioessays 30, 457–469 (2008)

    Article  PubMed  CAS  Google Scholar 

  4. Melrose, J., Smith, S., Ghosh, P., Whitelock, J.: Perlecan, the multidomain heparan sulfate proteoglycan of basement membranes, is also a prominent component of the cartilaginous primordia in the developing human fetal spine. J. Histochem. Cytochem. 51, 1331–1341 (2003)

    Article  PubMed  CAS  Google Scholar 

  5. Shu, C., Smith, S.S., Little, C.B., Melrose, J.: Comparative immunolocalisation of perlecan, heparan sulphate, fibroblast growth factor-18, and fibroblast growth factor receptor-3 and their prospective roles in chondrogenic and osteogenic development of the human foetal spine. Eur. Spine J. (2013)

  6. Smith, S.M., Shu, C., Melrose, J.: Comparative immunolocalisation of perlecan with collagen II and aggrecan in human foetal, newborn and adult ovine joint tissues demonstrates perlecan as an early developmental chondrogenic marker. Histochem. Cell Biol. 134, 251–263 (2010)

    Article  PubMed  CAS  Google Scholar 

  7. Smith, S.M., Whitelock, J.M., Iozzo, R.V., Little, C.B., Melrose, J.: Topographical variation in the distributions of versican, aggrecan and perlecan in the foetal human spine reflects their diverse functional roles in spinal development. Histochem. Cell Biol. 132, 491–503 (2009)

    Article  PubMed  CAS  Google Scholar 

  8. Whitelock, J., Melrose, J.: Heparan sulfate proteoglycans in healthy and diseased systems. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 739–751 (2011)

    Article  PubMed  CAS  Google Scholar 

  9. Whitelock, J.M., Melrose, J., Iozzo, R.V.: Diverse cell signaling events modulated by perlecan. Biochemistry 47, 11174–11183 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. Ori, A., Wilkinson, M.C., Fernig, D.G.: A systems biology approach for the investigation of the heparin/heparan sulfate interactome. J. Biol. Chem. 286, 19892–19904 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. Turnbull, J.E., Miller, R.L., Ahmed, Y., Puvirajesinghe, T.M., Guimond, S.E.: Glycomics profiling of heparan sulfate structure and activity. Methods Enzymol. 480, 65–85 (2010)

    Article  PubMed  CAS  Google Scholar 

  12. Caterson, B.: Fell-Muir lecture: chondroitin sulphate glycosaminoglycans: fun for some and confusion for others. Int. J. Exp. Pathol. 93, 1–10 (2012)

    Article  PubMed  CAS  Google Scholar 

  13. Malavaki, C., Mizumoto, S., Karamanos, N., Sugahara, K.: Recent advances in the structural study of functional chondroitin sulfate and dermatan sulfate in health and disease. Connect Tissue Res. 49, 133–139 (2008)

    Article  PubMed  CAS  Google Scholar 

  14. Nandini, C.D., Sugahara, K.: Role of the sulfation pattern of chondroitin sulfate in its biological activities and in the binding of growth factors. Adv. Pharmacol. 53, 253–279 (2006)

    Article  PubMed  CAS  Google Scholar 

  15. Purushothaman, A., Sugahara, K., Faissner, A.: Chondroitin sulfate “wobble motifs” modulate maintenance and differentiation of neural stem cells and their progeny. J. Biol. Chem. 287, 2935–2942 (2012)

    Article  PubMed  CAS  Google Scholar 

  16. Sugahara, K., Mikami, T., Uyama, T., Mizuguchi, S., Nomura, K., Kitagawa, H.: Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13, 612–620 (2003)

    Article  PubMed  CAS  Google Scholar 

  17. Asada, M., Shinomiya, M., Suzuki, M., Honda, E., Sugimoto, R., Ikekita, M., et al.: Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim. Biophys. Acta 1790, 40–48 (2009)

    Article  PubMed  CAS  Google Scholar 

  18. Cummings, R.D.: The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104 (2009)

    Article  PubMed  CAS  Google Scholar 

  19. Maeda, N., Fukazawa, N., Hata, T.: The binding of chondroitin sulfate to pleiotrophin/heparin-binding growth-associated molecule is regulated by chain length and oversulfated structures. J. Biol. Chem. 281, 4894–4902 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. Miller, R.E., Grodzinsky, A.J., Cummings, K., Plaas, A.H., Cole, A.A., Lee, R.T., et al.: Intraarticular injection of heparin-binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate. Arthritis Rheum. 62, 3686–3694 (2010)

    Article  PubMed  CAS  Google Scholar 

  21. Couchman, J.R., Tapanadechopone, P.: Detection of proteoglycan core proteins with glycosaminoglycan lyases and antibodies. Methods Mol. Biol. 171, 329–333 (2001)

    PubMed  CAS  Google Scholar 

  22. Sorrell, J.M., Lintala, A.M., Mahmoodian, F., Caterson, B.: Indirect immunocytochemical localisation of chondroitin sulphate proteoglycans in lymphopoietic and granulopoietic compartments of developing bursae of fabricus. J. Immunology 140, 4263–4270 (1988)

    CAS  Google Scholar 

  23. Sorrell, J.M., Mahmoodian, F., Schafer, I.A., Davis, B., Caterson, B.: Identification of monoclonal antibodies that recognize novel epitopes in native chondroitin/dermatan sulfate glycosaminoglycan chains: their use in mapping functionally distinct domains of human skin. J. Histochem. Cytochem. 38, 393–402 (1990)

    Article  PubMed  CAS  Google Scholar 

  24. Couchman, J.R., Caterson, B., Christner, J.E., Baker, J.R.: Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues. Nature 307, 650–652 (1984)

    Article  PubMed  CAS  Google Scholar 

  25. Caterson, B., Calabro, T., Hampton, A.: Monoclonal antibodies as probes for elucidating proteoglycan structure and function. In: Wight, T., Mecham, R. (eds.) Biology of the Extracellular Matrix: A Series, Biology of Proteoglycans. Academic, New York (1987)

    Google Scholar 

  26. Dowthwaite, G.P., Bishop, J.C., Redman, S.N., Khan, I.M., Rooney, P., Evans, D.J., et al.: The surface of articular cartilage contains a progenitor cell population. J. Cell Sci. 117, 889–897 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. Rees, S.G., Dent, C.M., Caterson, B.: Metabolism of proteoglycans in tendon. Scand J. Med. Sci. Sports. 19, 470–478 (2009)

    Article  PubMed  CAS  Google Scholar 

  28. Rees, S.G., Flannery, C.R., Little, C.B., Hughes, C.E., Caterson, B., Dent, C.M.: Catabolism of aggrecan, decorin and biglycan in tendon. Biochem. J. 350(Pt 1), 181–188 (2000)

    Article  PubMed  CAS  Google Scholar 

  29. Rees, S.G., Waggett, A.D., Kerr, B.C., Probert, J., Gealy, E.C., Dent, C.M., et al.: Immunolocalisation and expression of keratocan in tendon. Osteoarthr. Cartil. 17, 276–279 (2009)

    Article  PubMed  CAS  Google Scholar 

  30. Hayes, A.J., Benjamin, M., Ralphs, J.R.: Extracellular matrix in development of the intervertebral disc. Matrix Biol. 20, 107–121 (2001)

    Article  PubMed  CAS  Google Scholar 

  31. Hayes, A.J., Hughes, C.E., Ralphs, J.R., Caterson, B.: Chondroitin sulphate sulphation motif expression in the ontogeny of the intervertebral disc. Eur. Cell Mater. 21, 1–14 (2011)

    PubMed  CAS  Google Scholar 

  32. Caterson, B., Mahmoodian, F., Sorrell, J.M., Hardingham, T.E., Bayliss, M.T., Carney, S.L., et al.: Modulation of native chondroitin sulphate structure in tissue development and in disease. J. Cell Sci. 97(Pt 3), 411–417 (1990)

    PubMed  CAS  Google Scholar 

  33. Henriksson, H., Thornemo, M., Karlsson, C., Hagg, O., Junevik, K., Lindahl, A., et al.: Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine (Phila Pa 1976) 34, 2278–2287 (2009)

    Article  Google Scholar 

  34. Henriksson, H.B., Svala, E., Skioldebrand, E., Lindahl, A., Brisby, H.: Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zeeland white rabbit. Spine (Phila Pa 1976) (2011)

  35. Henriksson, H.B., Svala, E., Skioldebrand, E., Lindahl, A., Brisby, H.: Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit. Spine (Phila Pa 1976) 37, 722–732 (2012)

    Article  Google Scholar 

  36. Risbud, M.V., Shapiro, I.M.: Notochordal cells in the adult intervertebral disc: new perspective on an old question. Crit. Rev. Eukaryot. Gene Expr. 21, 29–41 (2011)

    Article  PubMed  CAS  Google Scholar 

  37. Risbud, M.V., Shapiro, I.M., Vaccaro, A.R., Albert, T.J.: Stem cell regeneration of the nucleus pulposus. Spine J. 4, 348S–353S (2004)

    Article  PubMed  Google Scholar 

  38. Hayes, A.J., Hall, A., Brown, L., Tubo, R., Caterson, B.: Macromolecular organization and in vitro growth characteristics of scaffold-free neocartilage grafts. J. Histochem. Cytochem. 55, 853–866 (2007)

    Article  PubMed  CAS  Google Scholar 

  39. Hayes, A.J., Tudor, D., Nowell, M.A., Caterson, B., Hughes, C.E.: Chondroitin sulfate sulfation motifs as putative biomarkers for isolation of articular cartilage progenitor cells. J. Histochem. Cytochem. 56, 125–138 (2008)

    Article  PubMed  CAS  Google Scholar 

  40. Matsumoto, K., Kamiya, N., Suwan, K., Atsumi, F., Shimizu, K., Shinomura, T., et al.: Identification and characterization of versican/PG-M aggregates in cartilage. J. Biol. Chem. 281, 18257–18263 (2006)

    Article  PubMed  CAS  Google Scholar 

  41. Melrose, J., Isaacs, M.D., Smith, S.M., Hughes, C.E., Little, C.B., Caterson, B., et al.: Chondroitin sulphate and heparan sulphate sulphation motifs and their proteoglycans are involved in articular cartilage formation during human foetal knee joint development. Histochem. Cell Biol. 138, 461–475 (2012)

    Article  PubMed  CAS  Google Scholar 

  42. Slater Jr., R.R., Bayliss, M.T., Lachiewicz, P.F., Visco, D.M., Caterson, B.: Monoclonal antibodies that detect biochemical markers of arthritis in humans. Arthritis Rheum. 38, 655–659 (1995)

    Article  PubMed  Google Scholar 

  43. Visco, D.M., Johnstone, B., Hill, M.A., Jolly, G.A., Caterson, B.: Immunohistochemical analysis of 3-B-(-) and 7-D-4 epitope expression in canine osteoarthritis. Arthritis Rheum. 36, 1718–1725 (1993)

    Article  PubMed  CAS  Google Scholar 

  44. Khan, I.M., Williams, R., Archer, C.W.: One flew over the progenitor’s nest: migratory cells find a home in osteoarthritic cartilage. Cell Stem Cell. 4, 282–284 (2009)

    Article  PubMed  CAS  Google Scholar 

  45. Tesche, F., Miosge, N.: Perlecan in late stages of osteoarthritis of the human knee joint. Osteoarthr. Cartil. 12, 852–862 (2004)

    Article  PubMed  CAS  Google Scholar 

  46. Tesche, F., Miosge, N.: New aspects of the pathogenesis of osteoarthritis: the role of fibroblast-like chondrocytes in late stages of the disease. Histol. Histopathol. 20, 329–337 (2005)

    PubMed  CAS  Google Scholar 

  47. Melrose, J., Roughley, P., Knox, S., Smith, S., Lord, M., Whitelock, J.: The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages. J. Biol. Chem. 281, 36905–36914 (2006)

    Article  PubMed  CAS  Google Scholar 

  48. Melrose, J., Smith, S., Cake, M., Read, R., Whitelock, J.: Spatial and temporal immunolocalisation of perlecan in the ovine meniscus. Histochem. Cell Biol. 124, 225–235 (2005)

    Article  PubMed  CAS  Google Scholar 

  49. Melrose, J., Smith, S., Whitelock, J.: Perlecan immunolocalises to perichondral vessels and canals in human foetal cartilagenous promordia in early vascular and matrix remodelling events associated with diarthrodial-joint development. J. Histochem. Cytochem. 52, 1405–1413 (2004)

    Article  PubMed  CAS  Google Scholar 

  50. Valiyaveettil, M., Mort, J.S., McDevitt, C.A.: The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint. Connect Tissue Res. 46, 83–91 (2005)

    Article  PubMed  CAS  Google Scholar 

  51. Gibson, G., Lin, D.L., Francki, K., Caterson, B., Foster, B.: Type X collagen is colocalized with a proteoglycan epitope to form distinct morphological structures in bovine growth cartilage. Bone 19, 307–315 (1996)

    Article  PubMed  CAS  Google Scholar 

  52. Khan, I.M., Palmer, E.A., Archer, C.W.: Fibroblast growth factor-2 induced chondrocyte cluster formation in experimentally wounded articular cartilage is blocked by soluble Jagged-1. Osteoarthr. Cartil. 18, 208–219 (2010)

    Article  PubMed  CAS  Google Scholar 

  53. Melrose, J., Ghosh, P., Taylor, T.K.: Proteoglycan heterogeneity in the normal adult ovine intervertebral disc. Matrix Biol. 14, 61–75 (1994)

    Article  PubMed  CAS  Google Scholar 

  54. Melrose, J., Little, C.B., Ghosh, P.: Detection of aggregatable proteoglycan populations by affinity blotting using biotinylated hyaluronan. Anal. Biochem. 256, 149–157 (1998)

    Article  PubMed  CAS  Google Scholar 

  55. Bitter, T., Muir, H.M.: A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962)

    Article  PubMed  CAS  Google Scholar 

  56. Knox, S., Melrose, J., Whitelock, J.: Electrophoretic, biosensor, and bioactivity analyses of perlecans of different cellular origins. Proteomics 1, 1534–1541 (2001)

    Article  PubMed  CAS  Google Scholar 

  57. Melrose, J., Smith, S., Cake, M., Read, R., Whitelock, J.: Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint. Histochem. Cell Biol. 123, 561–571 (2005)

    Article  PubMed  CAS  Google Scholar 

  58. Hill, M.A., Kincaid, S.A., Visco, D.M.: Use of histochemical techniques in the characterisation of osteochondroses affecting pigs. Vet. Rec. 127, 29–37 (1990)

    PubMed  CAS  Google Scholar 

  59. Lin, P.P., Buckwalter, J.A., Olmstead, M., Caterson, B.: Expression of proteoglycan epitopes in articular cartilage repair tissue. Iowa Orthop. J. 18, 12–18 (1998)

    PubMed  CAS  Google Scholar 

  60. Bayliss, M.T., Osborne, D., Woodhouse, S., Davidson, C.: Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J. Biol. Chem. 274, 15892–15900 (1999)

    Article  PubMed  CAS  Google Scholar 

  61. Plaas, A.H., West, L.A., Wong-Palms, S., Nelson, F.R.: Glycosaminoglycan sulfation in human osteoarthritis. Disease-related alterations at the non-reducing termini of chondroitin and dermatan sulfate. J. Biol. Chem. 273, 12642–12649 (1998)

    Article  PubMed  CAS  Google Scholar 

  62. West, L.A., Roughley, P., Nelson, F.R., Plaas, A.H.: Sulphation heterogeneity in the trisaccharide (GalNAcSbeta1, 4GlcAbeta1,3GalNAcS) isolated from the non-reducing terminal of human aggrecan chondroitin sulphate. Biochem. J. 342(Pt 1), 223–229 (1999)

    Article  PubMed  CAS  Google Scholar 

  63. Yasen, M., Fei, Q., Hutton, W.C., Zhang, J., Dong, J., Jiang, X., et al.: Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs. Acta. Biochim. Biophys. Sin. (Shanghai) (2013)

Download references

Acknowledgments

This study was supported by NHMRC Project Grant 1004032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Melrose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, C., Hughes, C., Smith, S.M. et al. The ovine newborn and human foetal intervertebral disc contain perlecan and aggrecan variably substituted with native 7D4 CS sulphation motif: spatiotemporal immunolocalisation and co-distribution with Notch-1 in the human foetal disc. Glycoconj J 30, 717–725 (2013). https://doi.org/10.1007/s10719-013-9475-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-013-9475-9

Keywords

Navigation